
Extracted from:

Seven Databases in Seven Weeks,
Second Edition

A Guide to Modern Databases and the NoSQL Movement

This PDF file contains pages extracted from Seven Databases in Seven Weeks,
Second Edition, published by the Pragmatic Bookshelf. For more information or

to purchase a paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2018 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Seven Databases in Seven Weeks,
Second Edition

A Guide to Modern Databases and the NoSQL Movement

Luc Perkins
with Eric Redmond

and Jim R. Wilson

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Managing Editor: Brian MacDonald
Supervising Editor: Jacquelyn Carter
Series Editor: Bruce A. Tate
Copy Editor: Nancy Rapoport
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2018 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-253-4
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—April 2018

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Day 2: Indexing, Aggregating, Mapreduce
Increasing MongoDB’s query performance is the first item on today’s docket,
followed by some more powerful and complex grouped queries. Finally, we’ll
round out the day with some data analysis using mapreduce.

Indexing: When Fast Isn’t Fast Enough
One of Mongo’s useful built-in features is indexing in the name of enhanced
query performance—something, as you’ve seen, that’s not available on all
NoSQL databases. MongoDB provides several of the best data structures for
indexing, such as the classic B-tree as well as other additions, such as two-
dimensional and spherical GeoSpatial indexes.

For now, we’re going to do a little experiment to see the power of MongoDB’s
B-tree index by populating a series of phone numbers with a random country
prefix (feel free to replace this code with your own country code). Enter the
following code into your console. This will generate 100,000 phone numbers
(it may take a while), between 1-800-555-0000 and 1-800-565-0000.

mongo/populatePhones.js
populatePhones = function(area, start, stop) {

for(var i = start; i < stop; i++) {
var country = 1 + ((Math.random() * 8) << 0);
var num = (country * 1e10) + (area * 1e7) + i;
var fullNumber = "+" + country + " " + area + "-" + i;
db.phones.insert({
_id: num,
components: {

country: country,
area: area,
prefix: (i * 1e-4) << 0,
number: i

},
display: fullNumber

});
print("Inserted number " + fullNumber);

}
print("Done!");

}

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/pwrdata/code/mongo/populatePhones.js
http://pragprog.com/titles/pwrdata
http://forums.pragprog.com/forums/pwrdata

Run the function with a three-digit area code (like 800) and a range of seven-
digit numbers (5,550,000 to 5,650,000—please verify your zeros when typing).

> populatePhones(800, 5550000, 5650000) // This could take a minute
> db.phones.find().limit(2)

{ "_id" : 18005550000, "components" : { "country" : 1, "area" : 800,
"prefix" : 555, "number" : 5550000 }, "display" : "+1 800-5550000" }

{ "_id" : 88005550001, "components" : { "country" : 8, "area" : 800,
"prefix" : 555, "number" : 5550001 }, "display" : "+8 800-5550001" }

Whenever a new collection is created, Mongo automatically creates an index
by the _id. These indexes can be found in the system.indexes collection. The fol-
lowing query shows all indexes in the database:

> db.getCollectionNames().forEach(function(collection) {
print("Indexes for the " + collection + " collection:");
printjson(db[collection].getIndexes());

});

Most queries will include more fields than just the _id, so we need to make
indexes on those fields.

We’re going to create a B-tree index on the display field. But first, let’s verify
that the index will improve speed. To do this, we’ll first check a query without
an index. The explain() method is used to output details of a given operation.

> db.phones.find({display: "+1 800-5650001"}).
explain("executionStats").executionStats

{
"executionTimeMillis": 52,
"executionStages": {

"executionTimeMillisEstimate": 58,
}

}

Your output will differ from ours here and only a few fields from the output
are shown here, but note the executionTimeMillisEstimate field—milliseconds to
complete the query—will likely be double digits.

We create an index by calling ensureIndex(fields,options) on the collection. The fields
parameter is an object containing the fields to be indexed against. The options
parameter describes the type of index to make. In this case, we’re building a
unique index on display that should just drop duplicate entries.

> db.phones.ensureIndex(
{ display : 1 },
{ unique : true, dropDups : true }

)

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/pwrdata
http://forums.pragprog.com/forums/pwrdata

Now try find() again, and check explain() to see whether the situation improves.

> db.phones.find({ display: "+1 800-5650001" }).
explain("executionStats").executionStats

{
"executionTimeMillis" : 0,
"executionStages": {

"executionTimeMillisEstimate": 0,
}

}

The executionTimeMillisEstimate changed from 52 to 0—an infinite improvement
(52 / 0)! Just kidding, but the query is now orders of magnitude faster.
Mongo is no longer doing a full collection scan but instead walking the tree
to retrieve the value. Importantly, scanned objects dropped from 109999 to
1—since it has become a single unique lookup.

explain() is a useful function, but you’ll use it only when testing specific query
calls. If you need to profile in a normal test or production environment, you’ll
need the system profiler.

Let’s set the profiling level to 2 (level 2 stores all queries; profiling level 1
stores only slower queries greater than 100 milliseconds) and then run find()
as normal.

> db.setProfilingLevel(2)
> db.phones.find({ display : "+1 800-5650001" })

This will create a new object in the system.profile collection, which you can read
as any other table to get information about the query, such as a timestamp
for when it took place and performance information (such as executionTimeMillis-
Estimate as shown). You can fetch documents from that collection like any
other:

> db.system.profile.find()

This will return a list of objects representing past queries. This query, for
example, would return stats about execution times from the first query in
the list:

> db.system.profile.find()[0].execStats
{

"stage" : "EOF",
"nReturned" : 0,
"executionTimeMillisEstimate" : 0,
"works" : 0,
"advanced" : 0,
"needTime" : 0,

• Click HERE to purchase this book now. discuss

Day 2: Indexing, Aggregating, Mapreduce • 7

http://pragprog.com/titles/pwrdata
http://forums.pragprog.com/forums/pwrdata

"needYield" : 0,
"saveState" : 0,
"restoreState" : 0,
"isEOF" : 1,
"invalidates" : 0

}

Like yesterday’s nested queries, Mongo can build your index on nested values.
If you wanted to index on all area codes, use the dot-notated field representa-
tion: components.area. In production, you should always build indexes in the
background using the { background : 1 } option.

> db.phones.ensureIndex({ "components.area": 1 }, { background : 1 })

If we find() all of the system indexes for our phones collection, the new one should
appear last. The first index is always automatically created to quickly look
up by _id, and the other two we added ourselves.

> db.phones.getIndexes()
[

{
"v" : 2,
"key" : {
"_id" : 1

},
"name" : "_id_",
"ns" : "book.phones"

},
{

"v" : 2,
"unique" : true,
"key" : {
"display" : 1

},
"name" : "display_1",
"ns" : "book.phones"

},
{

"v" : 2,
"key" : {
"components.area" : 1

},
"name" : "components.area_1",
"ns" : "book.phones",
"background" : 1

}
]

Our book.phones indexes have rounded out quite nicely.

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/pwrdata
http://forums.pragprog.com/forums/pwrdata

We should close this section by noting that creating an index on a large col-
lection can be slow and resource-intensive. Indexes simply “cost” more in
Mongo than in a relational database like Postgres due to Mongo’s schemaless
nature. You should always consider these impacts when building an index
by creating indexes at off-peak times, running index creation in the back-
ground, and running them manually rather than using automated index
creation. There are plenty more indexing tricks and tips online, but these are
the basics that may come in handy the most often.

Mongo’s Many Useful CLI Tools

Before we move on to aggregation in Mongo, we want to briefly tell you about the
other shell goodies that Mongo provides out-of-the-box in addition to mongod and
mongo. We won’t cover them in this book but we do strongly recommend checking
them out, as they together make up one of the most amply equipped CLI toolbelts in
the NoSQL universe.

DescriptionCommand

Exports data from Mongo into .bson files. That can mean entire collections
or databases, filtered results based on a supplied query, and more.

mongodump

Manipulates large GridFS data files (GridFS is a specification for BSON
files exceeding 16 MB).

mongofiles

Polls operation logs from MongoDB replication operations.mongooplog

Restores MongoDB databases and collections from backups created
using mongodump.

mongorestore

Displays basic MongoDB server stats.mongostat

Exports data from Mongo into CSV (comma-separated value) and JSON
files. As with mongodump, that can mean entire databases and collections
or just some data chosen on the basis of query parameters.

mongoexport

Imports data into Mongo from JSON, CSV, or TSV (term-separated value)
files. We’ll use this tool on Day 3.

mongoimport

Performs user-defined performance tests against a MongoDB server.mongoperf

Short for “MongoDB shard,” this tool provides a service for properly
routing data into a sharded MongoDB cluster (which we will not cover
in this chapter).

mongos

Displays usage stats for each collection stored in a Mongo database.mongotop

Converts BSON files into other formats, such as JSON.bsondump

For more in-depth info, see the MongoDB reference documentation.a

a. https://docs.mongodb.com/manual/reference/program

• Click HERE to purchase this book now. discuss

Day 2: Indexing, Aggregating, Mapreduce • 9

https://docs.mongodb.com/manual/reference/program
http://pragprog.com/titles/pwrdata
http://forums.pragprog.com/forums/pwrdata

Aggregated Queries
MongoDB includes a handful of single-purpose aggregators: count() provides
the number of documents included in a result set (which we saw earlier), dis-
tinct() collects the result set into an array of unique results, and aggregate()
returns documents according to a logic that you provide.

The queries we investigated yesterday were useful for basic data extraction,
but any post-processing would be up to you to handle. For example, say you
wanted to count the phone numbers greater than 5599999 or provide nuanced
data about phone number distribution in different countries—in other words,
to produce aggregate results using many documents. As in PostgreSQL, count()
is the most basic aggregator. It takes a query and returns a number (of
matching documents).

> db.phones.count({'components.number': { $gt : 5599999 } })
50000

The distinct() method returns each matching value (not a full document) where
one or more exists. We can get the distinct component numbers that are less
than 5,550,005 in this way:

> db.phones.distinct('components.number',
{'components.number': { $lt : 5550005 } })

[5550000, 5550001, 5550002, 5550003, 5550004]

The aggregate() method is more complex but also much more powerful. It enables
you to specify a pipeline-style logic consisting of stages such as: $match filters
that return specific sets of documents; $group functions that group based on
some attribute; a $sort() logic that orders the documents by a sort key; and
many others.3

You can chain together as many stages as you’d like, mixing and matching
at will. Think of aggregate() as a combination of WHERE, GROUP BY, and ORDER BY
clauses in SQL. The analogy isn’t perfect, but the aggregation API does a lot
of the same things.

Let’s load some city data into Mongo. There’s an included mongoCities100000.js
file containing insert statements for data about nearly 100,000 cities. Here’s
how you can execute that file in the Mongo shell: c

> load('mongoCities100000.js')
> db.cities.count()
99838

3. https://docs.mongodb.com/manual/reference/operator/aggregation-pipeline/

• 10

• Click HERE to purchase this book now. discuss

https://docs.mongodb.com/manual/reference/operator/aggregation-pipeline/
http://pragprog.com/titles/pwrdata
http://forums.pragprog.com/forums/pwrdata

Here’s an example document for a city:

{
"_id" : ObjectId("5913ec4c059c950f9b799895"),
"name" : "Sant Julià de Lòria",
"country" : "AD",
"timezone" : "Europe/Andorra",
"population" : 8022,
"location" : {

"longitude" : 42.46372,
"latitude" : 1.49129

}
}

We could use aggregate() to, for example, find the average population for all
cities in the Europe/London timezone. To do so, we could $match all documents
where timezone equals Europe/London, and then add a $group stage that pro-
duces one document with an _id field with a value of averagePopulation and an
avgPop field that displays the average value across all population values in the
collection:

> db.cities.aggregate([
{

$match: {
'timezone': {

$eq: 'Europe/London'
}

}
},
{

$group: {
_id: 'averagePopulation',
avgPop: {

$avg: '$population'
}

}
}

])
{ "_id" : "averagePopulation", "avgPop" : 23226.22149712092 }

We could also match all documents in that same timezone, sort them in
descending order by population, and then $project documents that only contain
the population field:

> db.cities.aggregate([
{

// same $match statement the previous aggregation operation
},

• Click HERE to purchase this book now. discuss

Day 2: Indexing, Aggregating, Mapreduce • 11

http://pragprog.com/titles/pwrdata
http://forums.pragprog.com/forums/pwrdata

{
$sort: {
population: -1

}
},
{

$project: {
_id: 0,
name: 1,
population: 1

}
}

])

You should see results like this:

{ "name" : "City of London", "population" : 7556900 }
{ "name" : "London", "population" : 7556900 }
{ "name" : "Birmingham", "population" : 984333 }
// many others

Experiment with it a bit—try combining some of the stage types we’ve already
covered in new ways—and then delete the collection when you’re done, as
we’ll add the same data back into the database using a different method on
Day 3.

> db.cities.drop()

This provides a very small taste of Mongo’s aggregation capabilities. The
possibilities are really endless, and we encourage you to explore other stage
types. Be forewarned that aggregations can be quite slow if you add a lot of
stages and/or perform them on very large collections. There are limits to how
well Mongo, as a schemaless database, can optimize these sorts of operations.
But if you’re careful to keep your collections reasonably sized and, even better,
structure your data to not require bold transformations to get the outputs
you want, then aggregate() can be a powerful and even speedy tool.

• 12

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/pwrdata
http://forums.pragprog.com/forums/pwrdata

