
Extracted from:

Agile Web Development with Rails
Second Edition

This PDF file contains pages extracted from Agile Web Development with Rails, published by the
Pragmatic Bookshelf. For more information or to purchase a paperback or PDF copy, please visit

http://www.pragmaticprogrammer.com.

Note: This extract contains some colored text (particularly in code listing). This is available only in
online versions of the books. The printed versions are black and white. Pagination might vary

between the online and printer versions; the content is otherwise identical.

Copyright © 2007The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any means,
electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragmaticprogrammer.com

In this chapter, we’ll see

• using “has_many :through” join tables

• creating a REST interface

• generating XML using rxml templates

• generating XML using to_xml on model objects

• handling requests for different content types

• creating application documentation

• getting statistics on our application

Chapter 12

Task G: One Last Wafer-Thin Change
Over the days that followed our first few iterations, we added fulfillment func-

tionality to the shopping system and rolled it out. It was a great success,

and over the months that followed the Depot application became a core part
of the business. So much so, in fact, that the marketing people got inter-

ested. They want to send mass mailings to people who have bought partic-

ular books, telling them that new titles are available. They already have the

spam∧H∧H∧H∧Hmailing system; it just needs an XML feed containing cus-

tomer names and e-mail addresses.

12.1 Generating the XML Feed

Let’s set up a REST-style interface to our application. REST stands for REp-
resentational State Transfer, which is basically meaningless. What it really

means is that you use HTTP verbs (GET, POST, DELETE, and so on) to send

requests and responses between applications. In our case, we’ll let the market-

ing system send us an HTTP GET request, asking for the details of customers

who’ve bought a particular product. Our application will respond with an XML
document.1 We talk with the IT folks over in marketing, and they agree to a

simple request URL format.

http://my.store.com/info/who_bought/<product id>

So, we have two issues to address: we need to be able to find the customers

who bought a particular product, and we need to generate an XML feed from

that list. Let’s start by generating the list.

Navigating Through Tables

Figure 12.1, on the next page, shows how the orders side of our database is

currently structured. Every order has a number of line items, and each line

1. We could have used web services to implement this transfer—Rails has support for acting as
both a SOAP and XML-RPC client and server. However, this seems like overkill in this case.

GENERATING THE XML FEED 178

line_items productsorders

id

name

. . .

id

title

. . .

id

product_id

order_id

quantity

Figure 12.1: Database Structure

item is associated with a product. Our marketing folks want to navigate these

associations in the opposite direction, going from a particular product to all
the line items that reference that product and then from these line items to

the corresponding order.

As of Rails 1.1, we can do this using a :through relationship. We can add the

following declaration to the product model.

Download depot_q/app/models/product.rb

class Product < ActiveRecord::Base

has_many :orders, :through => :line_items

. . .

Previously we used has_many to set up a parent/child relationship between

products and line items: we said that a product has many line items. Now,
we’re saying that a product is also associated with many orders but that there’s

no direct relationship between the two tables. Instead, Rails knows that to get

the orders for a product, it must first find the line items for the product and

then find the order associated with each line item.

Now this might sound fairly inefficient. And it would be, if Rails first fetched

the line items and then looped over each to load the orders. Fortunately, it’s

smarter than that. As you’ll see if you look at the log files when we run the

code we’re about to write, Rails generates an efficient SQL join between the

tables, allowing the database engine to optimize the query.

With the :through declaration in place, we can find the orders for a particular

product by referencing the orders attribute of that product.

product = Product.find(some_id)

orders = product.orders

logger.info("Product #{some_id} has #{orders.count} orders")

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/rails2/code/depot_q/app/models/product.rb
http://www.pragmaticprogrammer.com/titles/rails2

GENERATING THE XML FEED 179

Creating a REST Interface

Anticipating that this won’t be the last request that the marketing folks make,

we create a new controller to handle informational requests.

depot> ruby script/generate controller info

exists app/controllers/

exists app/helpers/

create app/views/info

exists test/functional/

create app/controllers/info_controller.rb

create test/functional/info_controller_test.rb

create app/helpers/info_helper.rb

We’ll add the who_bought action to the info controller. It simply loads up the list

of orders given a product id.

def who_bought

@product = Product.find(params[:id])

@orders = @product.orders

end

Now we need to implement the template that returns XML to our caller. We
could do this using the same rhtml templates we’ve been using to render web

pages, but there are a couple of better ways. The first uses rxml templates,

designed to make it easy to create XML documents. Let’s look at the template

who_bought.rxml, which we create in the app/views/info directory.

Download depot_q/app/views/info/who_bought.rxml

xml.order_list(:for_product => @product.title) do

for o in @orders

xml.order do

xml.name(o.name)

xml.email(o.email)

end

end

end

Believe it or not, this is just Ruby code. It uses Jim Weirich’s Builder library,

which generates a well-formed XML document as a side effect of executing a

program.

Within an rxml template, the variable xml represents the XML object being

constructed. When you invoke a method on this object (such as the call to

order_list on the first line in our template), the builder emits the corresponding

XML tag. If a hash is passed to one of these methods, it’s used to construct

the attributes to the XML tag. If you pass a string, it is used as the tag’s value.

If you want to nest tags, pass a block to the outer builder method call. XML

elements created inside the block will be nested inside the outer element. We

use this in our example to embed a list of <order> tags inside an <order_list>
and then to embed a <name> and <email> tag inside each <order>.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/rails2/code/depot_q/app/views/info/who_bought.rxml
http://www.pragmaticprogrammer.com/titles/rails2

GENERATING THE XML FEED 180

Figure 12.2: XML Returned by the who_bought Action

We can test this method using a browser or from the command line. If you

enter the URL into a browser, the XML will be returned. How it is displayed

depends on the browser: on my Mac, Safari renders the text and ignores the

tags, while Firefox shows a nicely highlighted representation of the XML (as
shown in Figure 12.2). In all browsers, the View → Source option should show

exactly what was sent from our application.

You can also query your application from the command line using a tool such

as curl or wget.

depot> curl http://localhost:3000/info/who_bought/1

<order_list for_product="Pragmatic Project Automation">

<order>

<name>Dave Thomas</name>

<email>customer@pragprog.com</email>

</order>

<order>

<name>F & W Flintstone</name>

<email>rock_crusher@bedrock.com</email>

</order>

</order_list>

In fact, this leads to an interesting question: can we arrange our action so that

a user accessing it from a browser sees a nicely formatted list, while those

making a REST request get XML back?

Responding Appropriately

Requests come into a Rails application using HTTP. An HTTP message consists
of some headers and (optionally) some data (such as the POST data from a

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/rails2

GENERATING THE XML FEED 181

form). One such header is Accept:, which the client uses to tell the server the

types of content that may be returned. For example, a browser might send an

HTTP request containing the header

Accept: text/html, text/plain, application/xml

In theory, a server should respond only with content that matches one of these

three types.

We can use this to write actions that respond with appropriate content. For

example, we could write a who_bought action that uses the accept header. If the
client accepts only XML, then we could return an XML-format REST response.

If the client accepts HTML, then we can render an HTML page instead.

In Rails, we use the respond_to method to perform conditional processing based

on the Accepts header. First, let’s write a trivial template for the HTML view.

Download depot_r/app/views/info/who_bought.rhtml

<h3>People Who Bought <%= @product.title %></h3>

<% for order in @orders -%>

<%= mail_to order.email, order.name %>

<% end -%>

Now we’ll use respond_to to vector to the correct template depending on the

incoming request accept header.

Download depot_r/app/controllers/info_controller.rb

def who_bought

@product = Product.find(params[:id])

@orders = @product.orders

respond_to do |format|

format.html

format.xml

end

end

Inside the respond_to block, we list the content types we accept. You can think
of it being a bit like a case statement, but it has one big difference: it ignores

the order you list the options in and instead uses the order from the incoming

request (because the client gets to say which format it prefers).

Here we’re using the default action for each type of content. For html, that
action is to invoke render. For xml, the action is to render the .rxml template.

The net effect is that the client can select to receive either HTML or XML from

the same action.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/rails2/code/depot_r/app/views/info/who_bought.rhtml
http://media.pragprog.com/titles/rails2/code/depot_r/app/controllers/info_controller.rb
http://www.pragmaticprogrammer.com/titles/rails2

GENERATING THE XML FEED 182

Unfortunately, this is hard to try with a browser. Instead, let’s use a command-

line client. Here we use curl (but tools such as wget work equally as well). The

-H option to curl lets us specify a request header. Let’s ask for XML first.

depot> curl -H "Accept: application/xml" \

http://localhost:3000/info/who_bought/1

<order_list for_product="Pragmatic Project Automation">

<order>

<name>Dave Thomas</name>

<email>customer@pragprog.com</email>

</order>

<order>

<name>F & W Flintstone</name>

<email>crusher@bedrock.com</email>

</order>

</order_list>

And then HTML.

depot> curl -H "Accept: text/html" \

http://localhost:3000/info/who_bought/1

<h3>People Who Bought Pragmatic Project Automation</h3>

Dave Thomas

F & W Flintstone

Another Way of Requesting XML

Although using the Accept header is the “official” HTTP way of specifying the

content type you’d like to receive, it isn’t always possible to set this header

from your client. Rails provides an alternative: we can set the preferred format
as part of the URL. If we want the response to our who_bought request to come

back as HTML, we can ask for /info/who_bought/1.html. If instead we want XML,

we can use /info/who_bought/1.xml. And this is extensible to any content type

(as long as we write the appropriate handler in our respond_to block).

Try requesting the URL http://localhost:3000/info/who_bought/1.xml. Depending

on your browser, you might see a nicely formatted XML display, or you might

see a blank page. If you see the latter, use your browser’s View → Source func-

tion to have a look at the response.

Autogenerating the XML

In the previous examples, we generated the XML responses by hand, using the

rxml template. That gives us control over the order of the elements returned.

But if that order isn’t important, we can let Rails generate the XML for a model

CLICK HERE to purchase this book now.

http://localhost:3000/info/who_bought/1.xml
http://www.pragmaticprogrammer.com/titles/rails2

GENERATING THE XML FEED 183

object for us by calling the model’s to_xml method. In the code that follows,

we’ve overridden the default behavior for XML requests to use this.

def who_bought

@product = Product.find(params[:id])

@orders = @product.orders

respond_to do |accepts|

accepts.html

accepts.xml { render :xml => @product.to_xml(:include => :orders) }

end

end

The :xml option to render tells it to set the response content type to applica-

tion/xml. The result of the to_xml call is then sent back to the client. In this

case, we dump out the @product variable and any orders that reference that

product.

depot> curl http://localhost:3000/info/who_bought/1.xml

<?xml version="1.0" encoding="UTF-8"?>

<product>

<image-url>/images/auto.jpg</image-url>

<title>Pragmatic Project Automation</title>

<price type="integer">2995</price>

<orders>

<order>

<name>Dave Thomas</name>

<id type="integer">1</id>

<pay-type>check</pay-type>

<address>123 The Street</address>

<email>customer@pragprog.com</email>

</order>

<order>

<name>F & W Flintstone</name>

<id type="integer">2</id>

<pay-type>check</pay-type>

<address>123 Bedrock</address>

<email>crusher@bedrock.com</email>

</order>

</orders>

<id type="integer">1</id>

<description><p>

Pragmatic Project Automation shows

you how to improve the consistency and repeatability of

your project's procedures using automation to reduce risk

and errors. </p> <p> Simply put, we're going

to put this thing called

a computer to work for you doing the mundane (but

important) project stuff. That means you'll have more time

and energy to do the really exciting---and

difficult---stuff, like writing quality code.

</p>

</description>

</product>

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/rails2

FINISHING UP 184

Note that by default to_xml dumps everything out. You can tell it to exclude

certain attributes, but that can quickly get messy. If you have to generate XML

that meets a particular schema or DTD, you’re probably better off sticking with

rxml templates.

12.2 Finishing Up

The coding is over, but we can still do a little more tidying before we deploy the

application into production.

We might want to check out our application’s documentation. As we’ve been

coding, we’ve been writing brief but elegant comments for all our classes and

methods. (We haven’t shown them in the code extracts in this book because

we wanted to save space.) Rails makes it easy to run Ruby’s RDoc utility on RDoc
→֒ page 645

all the source files in an application to create good-looking programmer doc-

umentation. But before we generate that documentation, we should probably

create a nice introductory page so that future generations of developers will

know what our application does. To do this, edit the file doc/README_FOR_APP,

and enter anything you think might be useful. This file will be processed using
RDoc, so you have a fair amount of formatting flexibility.

You can generate the documentation in HTML format using the rake command.

depot> rake doc:app

This generates documentation into the directory doc/app. Figure 12.3, on the

next page, shows the initial page of the output generated.

Finally, we might be interested to see how much code we’ve written. There’s

a Rake task for that, too. (Your numbers will be different from this, if for no
other reason than you probably won’t have written tests yet. That’s the subject

of the next chapter.)

depot> rake stats

(in /Users/dave/Work/depot)

+----------------------+-------+-------+---------+---------+-----+-------+

| Name | Lines | LOC | Classes | Methods | M/C | LOC/M |

+----------------------+-------+-------+---------+---------+-----+-------+

| Helpers | 17 | 15 | 0 | 1 | 0 | 13 |

| Controllers | 229 | 154 | 5 | 23 | 4 | 4 |

| Components | 0 | 0 | 0 | 0 | 0 | 0 |

| Functional tests | 206 | 141 | 8 | 25 | 3 | 3 |

| Models | 261 | 130 | 6 | 18 | 3 | 5 |

| Unit tests | 178 | 120 | 5 | 13 | 2 | 7 |

| Libraries | 0 | 0 | 0 | 0 | 0 | 0 |

| Integration tests | 192 | 130 | 2 | 10 | 5 | 11 |

+----------------------+-------+-------+---------+---------+-----+-------+

| Total | 1083 | 690 | 26 | 90 | 3 | 5 |

+----------------------+-------+-------+---------+---------+-----+-------+

Code LOC: 299 Test LOC: 391 Code to Test Ratio: 1:1.3

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/rails2

FINISHING UP 185

Figure 12.3: Our Application’s Internal Documentation

Playtime

Here’s some stuff to try on your own.

• Change the original catalog display (the index action in the store con-

troller) so that it returns an XML product catalog if the client requests

an XML response.

• Try using rxml templates to generate normal HTML (technically, XHTML)

responses. What are the advantages and disadvantages?

• If you like the programmatic generation of HTML responses, have a look

at Markaby.2 It installs as a plugin, so you’ll be trying stuff we haven’t
talked about yet, but the instructions on the web site are clear.

• Add credit card and PayPal processing, fulfillment, couponing, RSS sup-

port, user accounts, content management, and so on, to the Depot appli-

cation. Sell the resulting application to a big-name web company. Retire
early, and do good deeds.

(You’ll find hints at http://wiki.pragprog.com/cgi-bin/wiki.cgi/RailsPlayTime)

2. http://redhanded.hobix.com/inspect/markabyForRails.html

CLICK HERE to purchase this book now.

http://wiki.pragprog.com/cgi-bin/wiki.cgi/RailsPlayTime
http://redhanded.hobix.com/inspect/markabyForRails.html
http://www.pragmaticprogrammer.com/titles/rails2

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles continue
the well-known Pragmatic Programmer style, and continue to garner awards and rave reviews. As
development gets more and more difficult, the Pragmatic Programmers will be there with more titles
and products to help you stay on top of your game.

Visit Us Online
Agile Web Development with Rails

http://pragmaticprogrammer.com/titles/rails2

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragmaticprogrammer.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragmaticprogrammer.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact with our wiki,
and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragmaticprogrammer.com/news

Check out the latest pragmatic developments in the news.

Buy the Book
If you liked this PDF, perhaps you’d like to have a paper copy of the book. It’s available for purchase
at our store: pragmaticprogrammer.com/titles/rails2.

Contact Us
Phone Orders: 1-800-699-PROG (+1 919 847 3884)
Online Orders: www.pragmaticprogrammer.com/catalog

Customer Service: orders@pragmaticprogrammer.com

Non-English Versions: translations@pragmaticprogrammer.com

Pragmatic Teaching: academic@pragmaticprogrammer.com

Author Proposals: proposals@pragmaticprogrammer.com

http://pragmaticprogrammer.com/titles/rails2
http://pragmaticprogrammer.com/updates
http://pragmaticprogrammer.com/community
http://pragmaticprogrammer.com/news
pragmaticprogrammer.com/titles/rails2
www.pragmaticprogrammer.com/catalog

