
Extracted from:

Agile Web Development with Rails
Second Edition

This PDF file contains pages extracted from Agile Web Development with Rails, published by the
Pragmatic Bookshelf. For more information or to purchase a paperback or PDF copy, please visit

http://www.pragmaticprogrammer.com.

Note: This extract contains some colored text (particularly in code listing). This is available only in
online versions of the books. The printed versions are black and white. Pagination might vary

between the online and printer versions; the content is otherwise identical.

Copyright © 2007The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any means,
electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragmaticprogrammer.com

This chapter was written by Mike Clark (http://clarkware.com). Mike is an independent

consultant, author, and trainer. Most important, he’s a programmer. He helps teams build

better software faster using agile practices. With an extensive background in J2EE and

test-driven development, he’s currently putting his experience to work on Rails projects.

Chapter 13

Task T: Testing
In short order we’ve developed a respectable web-based shopping cart appli-

cation. Along the way, we got rapid feedback by writing a little code and then

punching buttons in a web browser (with our customer by our side) to see
whether the application behaved as we expected. This testing strategy works

for about the first hour you’re developing a Rails application, but soon there-

after you’ve amassed enough features that manual testing just doesn’t scale.

Your fingers grow tired and your mind goes numb every time you have to

punch all the buttons, so you don’t test very often, if ever.

Then one day you make a minor change and it breaks a few features, but you

don’t realize it until the customer phones up to say she’s no longer happy. If

that weren’t bad enough, it takes you hours to figure out exactly what went

wrong. You made an innocent change over here, but it broke stuff way over
there. By the time you’ve unraveled the mystery, the customer has found her-

self a new best programmer.

It doesn’t have to be this way. There’s a practical alternative to this madness:

write tests!

In this chapter, we’ll write automated tests for the application we all know

and love—the Depot application.1 Ideally, we’d write these tests incrementally

to get little confidence boosts along the way. Thus, we’re calling this Task T,

because we should be doing testing all the time. You’ll find listings of the code
from this chapter starting on page 671.

13.1 Tests Baked Right In

With all the fast and loose coding we’ve been doing while building Depot, it

would be easy to assume that Rails treats testing as an afterthought. Nothing

1. We’ll be testing the stock, vanilla version of Depot. If you’ve made modifications (perhaps by
trying some of the playtime exercises at the ends of the chapters), you might have to make adjust-
ments.

http://clarkware.com

UNIT TESTING OF MODELS 187

could be further from the truth. One of the real joys of the Rails framework is

that it has support for testing baked right in from the start of every project.

Indeed, from the moment you create a new application using the rails com-

mand, Rails starts generating a test infrastructure for you.

We haven’t written a lick of test code for the Depot application, but if you look

in the top-level directory of that project, you’ll notice a subdirectory called test.

Inside this directory you’ll see five directories and a helper file.

depot> ls -p test

fixtures/ integration/ test_helper.rb

functional/ mocks/ unit/

So our first decision—where to put tests—has already been made for us. The

rails command creates the full test directory structure.

By convention, Rails calls things that test models unit tests, things that test
a single action in a controller functional tests, and things that test the flow

through one or more controllers integration tests. Let’s take a peek inside the

unit and functional subdirectories to see what’s already there.

depot> ls test/unit

line_item_test.rb order_test.rb product_test.rb user_test.rb

depot> ls test/functional

admin_controller_test.rb login_controller_test.rb

info_controller_test.rb store_controller_test.rb

Look at that! Rails has already created files to hold the unit tests for the models

and the functional tests for the controllers we created earlier with the generate

script. This is a good start, but Rails can help us only so much. It puts us on
the right path, letting us focus on writing good tests. We’ll start back where

the data lives and then move up closer to where the user lives.

13.2 Unit Testing of Models

The first model we created for the Depot application way back on page 70

was Product. Let’s see what kind of test goodies Rails generated inside the file

test/unit/product_test.rb when we generated that model.

Download depot_r/test/unit/product_test.rb

require File.dirname(__FILE__) + '/../test_helper'

class ProductTest < Test::Unit::TestCase

fixtures :products

def test_truth

assert true

end

end

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/rails2/code/depot_r/test/unit/product_test.rb
http://www.pragmaticprogrammer.com/titles/rails2

UNIT TESTING OF MODELS 188

OK, our second decision—how to write tests—has already been made for us.

The fact that ProductTest is a subclass of the Test::Unit::TestCase class tells us

that Rails generates tests based on the Test::Unit framework that comes pre-

installed with Ruby. This is good news because it means if we’ve already been

testing our Ruby programs with Test::Unit tests (and why wouldn’t we be?),
then we can build on that knowledge to test Rails applications. If you’re new

to Test::Unit, don’t worry. We’ll take it slow.

Now, what’s with the generated code inside of the test case? Rails generated

two things for us. The first is the following line of code.

fixtures :products

There’s a lot of magic behind this line of code—it allows us to prepopulate our

database with just the right test data—and we’ll be talking about it in depth

in a minute.

The second thing Rails generated is the method test_truth. If you’re familiar

with Test::Unit you’ll know all about this method. The fact that its name starts

with test means that it will run as a test by the testing framework. And the

assert line in there is an actual test. It isn’t much of one, though—all it does is
test that true is true. Clearly, this is a placeholder, but it’s an important one,

because it lets us see that all the testing infrastructure is in place. So, let’s try

to run this test class.

depot> ruby test/unit/product_test.rb

Loaded suite test/unit/product_test

Started

EE

Finished in 0.559942 seconds.

1) Error:

test_truth(ProductTest):

MysqlError: Unknown database 'depot_test'

... a whole bunch of tracing...

1 tests, 0 assertions, 0 failures, 2 errors

Guess it wasn’t the truth, after all. The test didn’t just fail, it exploded! Thank-
fully, it leaves us a clue—it couldn’t find a database called depot_test. Hmph.

A Database Just for Tests

Remember back on page 71 when we created the development database for

the Depot application? We called it depot_development. That’s because that’s
the default name Rails gave it in the database.yml file in the config directory. If

you look in that configuration file again, you’ll notice Rails actually created a

configuration for three separate databases.

• depot_development will be our development database. All of our program-
ming work will be done here.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/rails2

UNIT TESTING OF MODELS 189

• depot_test is a test database.

• depot_production is the production database. Our application will use this

when we put it online.

So far, we’ve been doing all our work in the development database. Now that
we’re running tests, though, Rails needs to use the test database, and we

haven’t created one yet.

Let’s remedy that now. As we’re using the MySQL database, we’ll again use
mysqladmin to create the database.

depot> mysqladmin -u root create depot_test

Now let’s run the test again.

depot> ruby test/unit/product_test.rb

Loaded suite test/unit/product_test

Started

E

Finished in 0.06429 seconds.

1) Error:

test_truth(ProductTest):

ActiveRecord::StatementInvalid: MysqlError:

Table 'depot_test.products' doesn't exist: DELETE FROM products

1 tests, 0 assertions, 0 failures, 1 errors

Oh, dear! Not much better than last time. But the error is different. Now it’s

complaining that we don’t have a products table in our test database. And

indeed we don’t: right now all we have is an empty schema. Let’s populate the

test database schema to match that of our development database. We’ll use

the db:test:prepare task to copy the schema across.

depot> rake db:test:prepare

Now we have a database containing a schema. Let’s try our unit test one more

time.

depot> ruby test/unit/product_test.rb

Loaded suite test/unit/product_test

Started

.

Finished in 0.085795 seconds.

1 tests, 1 assertions, 0 failures, 0 errors

OK, that looks better. See how having the stub test wasn’t really pointless? It

let us get our test environment all set up. Now that it is, let’s get on with some
real tests.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/rails2

UNIT TESTING OF MODELS 190

But, before we do, I have a confession. I wanted to show you how to set up the

test database schema manually, and then how to run tests directly. However,

there’s a short cut. You can use the rake task

depot> rake test:units

This task does two things: it copies the schema into the test database, and

then it runs all the tests in the test/unit directory. Go ahead—try it now.

If I want to run all my tests, I use this rake task. If I want to work on just a

particular test, I’ll use Ruby to run just that file.

A Real Unit Test

We’ve added a fair amount of code to the Product model since Rails first gener-

ated it. Some of that code handles validation.

Download depot_r/app/models/product.rb

validates_presence_of :title, :description, :image_url

validates_numericality_of :price

validates_uniqueness_of :title

validates_format_of :image_url,

:with => %r{\.(gif|jpg|png)$}i,

:message => "must be a URL for a GIF, JPG, or PNG image"

protected

def validate

errors.add(:price, "should be at least 0.01") if price.nil? || price < 0.01

end

How do we know this validation is working? Let’s test it. First, if we create a

product with no attributes set, we’ll expect it to be invalid and for there to be

an error associated with each field. We can use the model’s valid? method to

see whether it validates, and we can use the invalid? method of the error list to
see if there’s an error associated with a particular attribute.

Now that we know what to test, we need to know how to tell the test framework

whether our code passes or fails. We do that using assertions. An assertion is

simply a method call that tells the framework what we expect to be true. The
simplest assertion is the method assert, which expects its argument to be true.

If it is, nothing special happens. However, if the argument to assert is false, the

assertion fails. The framework will output a message and will stop executing

the test method containing the failure. In our case, we expect that an empty

Product model will not pass validation, so we can express that expectation by
asserting that it isn’t valid.

assert !product.valid?

Let’s write the full test.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/rails2/code/depot_r/app/models/product.rb
http://www.pragmaticprogrammer.com/titles/rails2

UNIT TESTING OF MODELS 191

Download depot_r/test/unit/product_test.rb

def test_invalid_with_empty_attributes

product = Product.new

assert !product.valid?

assert product.errors.invalid?(:title)

assert product.errors.invalid?(:description)

assert product.errors.invalid?(:price)

assert product.errors.invalid?(:image_url)

end

When we run the test case, we’ll now see two tests executed (the original
test_truth method and our new test method).

depot> ruby test/unit/product_test.rb

Loaded suite test/unit/product_test

Started

..

Finished in 0.092314 seconds.

2 tests, 6 assertions, 0 failures, 0 errors

Sure enough, the validation kicked in, and all our assertions passed.

Clearly at this point we can dig deeper and exercise individual validations.

Let’s look at just three of the many possible tests. First, we’ll check that the

validation of the price works the way we expect.

Download depot_r/test/unit/product_test.rb

def test_positive_price

product = Product.new(:title => "My Book Title",

:description => "yyy",

:image_url => "zzz.jpg")

product.price = -1

assert !product.valid?

assert_equal "should be at least 0.01", product.errors.on(:price)

product.price = 0

assert !product.valid?

assert_equal "should be at least 0.01", product.errors.on(:price)

product.price = 1

assert product.valid?

end

In this code we create a new product and then try setting its price to -1, 0,

and +1, validating the product each time. If our model is working, the first two

should be invalid, and we verify the error message associated with the price

attribute is what we expect. The last price is acceptable, so we assert that the

model is now valid. (Some folks would put these three tests into three separate
test methods—that’s perfectly reasonable.)

Next, we’ll test that we’re validating the image URL ends with one of .gif, .jpg,

or .png.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/rails2/code/depot_r/test/unit/product_test.rb
http://media.pragprog.com/titles/rails2/code/depot_r/test/unit/product_test.rb
http://www.pragmaticprogrammer.com/titles/rails2

UNIT TESTING OF MODELS 192

Download depot_r/test/unit/product_test.rb

def test_image_url

ok = %w{ fred.gif fred.jpg fred.png FRED.JPG FRED.Jpg

http://a.b.c/x/y/z/fred.gif }

bad = %w{ fred.doc fred.gif/more fred.gif.more }

ok.each do |name|

product = Product.new(:title => "My Book Title",

:description => "yyy",

:price => 1,

:image_url => name)

assert product.valid?, product.errors.full_messages

end

bad.each do |name|

product = Product.new(:title => "My Book Title", :description => "yyy", :price => 1,

:image_url => name)

assert !product.valid?, "saving #{name}"

end

end

Here we’ve mixed things up a bit. Rather than write out the nine separate

tests, we’ve used a couple of loops, one to check the cases we expect to pass
validation, the second to try cases we expect to fail. You’ll notice that we’ve

also added an extra parameter to our assert method calls. All of the testing

assertions accept an optional trailing parameter containing a string. This will

be written along with the error message if the assertion fails and can be useful

for diagnosing what went wrong.

Finally, our model contains a validation that checks that all the product titles

in the database are unique. To test this one, we’re going to need to store

product data in the database.

One way to do this would be to have a test create a product, save it, then

create another product with the same title, and try to save it too. This would

clearly work. But there’s a more idiomatic way—we can use Rails fixtures.

Test Fixtures

In the world of testing, a fixture is an environment in which you can run a

test. If you’re testing a circuit board, for example, you might mount it in a test

fixture that provides it with the power and inputs needed to drive the function

to be tested.

In the world of Rails, a test fixture is simply a specification of the initial con-

tents of a model (or models) under test. If, for example, we want to ensure that

our products table starts off with known data at the start of every unit test, we

can specify those contents in a fixture, and Rails will take care of the rest.

You specify fixture data in files in the test/fixtures directory. These files contain

test data in either Comma-Separated Value (CSV) or YAML format. For our

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/rails2/code/depot_r/test/unit/product_test.rb
http://www.pragmaticprogrammer.com/titles/rails2

UNIT TESTING OF MODELS 193

tests we’ll use YAML, the preferred format. Each YAML fixture file contains the

data for a single model. The name of the fixture file is significant; the base

name of the file must match the name of a database table. Because we need

some data for a Product model, which is stored in the products table, we’ll add

it to the file called products.yml. Rails already created this fixture file when we
first created the model.

Read about fixtures at ...

one:

id: 1

two:

id: 2

The fixture file contains an entry for each row that we want to insert into the
database. Each row is given a name. In the case of the Rails-generated fixture,

the rows are named first and another. This name has no significance as far

as the database is concerned—it is not inserted into the row data. Instead, as

we’ll see shortly, the name gives us a convenient way to reference test data

inside our test code.

Inside each entry you’ll see an indented list of attribute name/value pairs. In

the Rails-generated fixture only the id attribute is set. Although it isn’t obvious

in print, you must use spaces, not tabs, at the start of each of the data lines,

and all the lines for a row must have the same indentation. Finally, you need
to make sure the names of the columns are correct in each entry; a mismatch

with the database column names may cause a hard-to-track-down exception.

Let’s replace the dummy data in the fixture file with something we can use to

test our product model. We’ll start with a single book. (Note that you have to
include the id column in test fixtures.)

Download depot_r/test/fixtures/products.yml

ruby_book:

id: 1

title: Programming Ruby

description: Dummy description

price: 1234

image_url: ruby.png

Now that we have a fixture file, we want Rails to load up the test data into the

products table when we run the unit test. And, in fact, Rails is already doing

this, thanks to the following line in ProductTest.

Download depot_r/test/unit/product_test.rb

fixtures :products

The fixtures directive loads the fixture data corresponding to the given model

name into the corresponding database table before each test method in the

test case is run. The name of the fixture file determines the table that is loaded,

so using :products will cause the products.yml fixture file to be used.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/rails2/code/depot_r/test/fixtures/products.yml
http://media.pragprog.com/titles/rails2/code/depot_r/test/unit/product_test.rb
http://www.pragmaticprogrammer.com/titles/rails2

UNIT TESTING OF MODELS 194

David Says. . .

Picking Good Fixture Names

Just like the names of variables in general, you want to keep the names of fix-

tures as self-explanatory as possible. This increases the readability of the tests

when you’re asserting that product(:valid_order_for_fred) is indeed Fred’s valid

order. It also makes it a lot easier to remember which fixture you’re supposed

to test against without having to look up p1 or order4. The more fixtures you get,

the more important it is to pick good fixture names. So, starting early keeps you

happy later.

But what to do with fixtures that can’t easily get a self-explanatory name like

valid_order_for_fred? Pick natural names that you have an easier time associat-

ing to a role. For example, instead of using order1, use christmas_order. Instead of

customer1, use fred. Once you get into the habit of natural names, you’ll soon

be weaving a nice little story about how fred is paying for his christmas_order with

his invalid_credit_card first, then paying his valid_credit_card, and finally choosing

to ship it all off to aunt_mary.

Association-based stories are key to remembering large worlds of fixtures with

ease.

Let’s say that again another way. In the case of our ProductTest class, adding

the fixtures directive means that the products table will be emptied out and then

populated with the single row for the Ruby book before each test method is

run. Each test method gets a freshly initialized table in the test database.

Using Fixture Data

Now we know how to get fixture data into the database, we need to find ways

of using it in our tests.

Clearly, one way would be to use the finder methods in the model to read the

data. However, Rails makes it easier than that. For each fixture it loads into a

test, Rails defines a method with the same name as the fixture. You can use

this method to access preloaded model objects containing the fixture data:
simply pass it the name of the row as defined in the YAML fixture file, and it’ll

return a model object containing that row’s data. In the case of our product

data, calling products(:ruby_book) returns a Product model containing the data

we defined in the fixture. Let’s use that to test the validation of unique product

titles.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/rails2

UNIT TESTING OF MODELS 195

Download depot_r/test/unit/product_test.rb

def test_unique_title

product = Product.new(:title => products(:ruby_book).title,

:description => "yyy",

:price => 1,

:image_url => "fred.gif")

assert !product.save

assert_equal "has already been taken", product.errors.on(:title)

end

The test assumes that the database already includes a row for the Ruby book.

It gets the title of that existing row using

products(:ruby_book).title

It then creates a new Product model, setting its title to that existing title. It
asserts that attempting to save this model fails and that the title attribute has

the correct error associated with it.

If you want to avoid using a hard-coded string for the Active Record error, you

can compare the response against its built-in error message table.

Download depot_r/test/unit/product_test.rb

def test_unique_title1

product = Product.new(:title => products(:ruby_book).title,

:description => "yyy",

:price => 1,

:image_url => "fred.gif")

assert !product.save

assert_equal ActiveRecord::Errors.default_error_messages[:taken],

product.errors.on(:title)

end

(To find a list of these built-in error messages, look for the file validations.rb

within the Active Record gem. Figure 13.1, on the next page contains a list of

the errors at the time this chapter was written, but it may well have changed

by the time you’re reading it.)

Testing the Cart

Our Cart class contains some business logic. When we add a product to a cart,

it checks to see whether that product is already in the cart’s list of items. If

so, it increments the quantity of that item; if not, it adds a new item for that

product. Let’s write some tests for this functionality.

The Rails generate command created source files to hold the unit tests for

the database-backed models in our application. But what about the cart? We

created the Cart class by hand, and we don’t have a file in the unit test directory

corresponding to it. Nil desperandum! Let’s just create one. We’ll simply copy

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/rails2/code/depot_r/test/unit/product_test.rb
http://media.pragprog.com/titles/rails2/code/depot_r/test/unit/product_test.rb
http://www.pragmaticprogrammer.com/titles/rails2

UNIT TESTING OF MODELS 196

@@default_error_messages = {

:inclusion => "is not included in the list",

:exclusion => "is reserved",

:invalid => "is invalid",

:confirmation => "doesn't match confirmation",

:accepted => "must be accepted",

:empty => "can't be empty",

:blank => "can't be blank",

:too_long => "is too long (maximum is %d characters)",

:too_short => "is too short (minimum is %d characters)",

:wrong_length => "is the wrong length (should be %d characters)",

:taken => "has already been taken",

:not_a_number => "is not a number"

}

Figure 13.1: Standard Active Record Validation Messages

the boilerplate from another test file into a new cart_test.rb file (remembering to

rename the class to CartTest).

Download depot_r/test/unit/cart_test.rb

require File.dirname(__FILE__) + '/../test_helper'

class CartTest < Test::Unit::TestCase

fixtures :products

end

Notice that we’ve included the existing products fixture into this test. This

is common practice: we’ll often want to share test data among multiple test

cases. In this case the cart tests will need access to product data because we’ll

be adding products to the cart.

Because we’ll need to test adding different products to our cart, we’ll need to

add at least one more product to our products.yml fixture. The complete file now

looks like this.

Download depot_r/test/fixtures/products.yml

ruby_book:

id: 1

title: Programming Ruby

description: Dummy description

price: 1234

image_url: ruby.png

rails_book:

id: 2

title: Agile Web Development with Rails

description: Dummy description

price: 2345

image_url: rails.png

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/rails2/code/depot_r/test/unit/cart_test.rb
http://media.pragprog.com/titles/rails2/code/depot_r/test/fixtures/products.yml
http://www.pragmaticprogrammer.com/titles/rails2

UNIT TESTING OF MODELS 197

Let’s start by seeing what happens when we add a Ruby book and a Rails book

to our cart. We’d expect to end up with a cart containing two items. The total

price of items in the cart should be the Ruby book’s price plus the Rails book’s

price.

Download depot_r/test/unit/cart_test.rb

def test_add_unique_products

cart = Cart.new

rails_book = products(:rails_book)

ruby_book = products(:ruby_book)

cart.add_product rails_book

cart.add_product ruby_book

assert_equal 2, cart.items.size

assert_equal rails_book.price + ruby_book.price, cart.total_price

end

Let’s run the test.

depot> ruby test/unit/cart_test.rb

Loaded suite test/unit/cart_test

Started

.

Finished in 0.12138 seconds.

1 tests, 2 assertions, 0 failures, 0 errors

So far, so good. Let’s write a second test, this time adding two Rails books to

the cart. Now we should see just one item in the cart, but with a quantity of 2.

Download depot_r/test/unit/cart_test.rb

def test_add_duplicate_product

cart = Cart.new

rails_book = products(:rails_book)

cart.add_product rails_book

cart.add_product rails_book

assert_equal 2*rails_book.price, cart.total_price

assert_equal 1, cart.items.size

assert_equal 2, cart.items[0].quantity

end

We’re starting to see a little bit of duplication creeping into these tests. Both

create a new cart, and both set up local variables as shortcuts for the fixture
data. Luckily, the Ruby unit testing framework gives us a convenient way of

setting up a common environment for each test method. If you add a method

named setup in a test case, it will be run before each test method—the setup

method sets up the environment for each test. We can therefore use it to set

up some instance variables to be used by the tests.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/rails2/code/depot_r/test/unit/cart_test.rb
http://media.pragprog.com/titles/rails2/code/depot_r/test/unit/cart_test.rb
http://www.pragmaticprogrammer.com/titles/rails2

UNIT TESTING OF MODELS 198

Download depot_r/test/unit/cart_test1.rb

require File.dirname(__FILE__) + '/../test_helper'

class CartTest < Test::Unit::TestCase

fixtures :products

def setup

@cart = Cart.new

@rails = products(:rails_book)

@ruby = products(:ruby_book)

end

def test_add_unique_products

@cart.add_product @rails

@cart.add_product @ruby

assert_equal 2, @cart.items.size

assert_equal @rails.price + @ruby.price, @cart.total_price

end

def test_add_duplicate_product

@cart.add_product @rails

@cart.add_product @rails

assert_equal 2*@rails.price, @cart.total_price

assert_equal 1, @cart.items.size

assert_equal 2, @cart.items[0].quantity

end

end

Is this kind of setup useful for this particular test? It could be argued either

way. But, as we’ll see when we look at functional testing, the setup method can

play a critical role in keeping tests consistent.

Unit Testing Support

As you write your unit tests, you’ll probably end up using most of the asser-

tions in the list that follows.

assert(boolean,message)

Fails if boolean is false or nil.

assert(User.find_by_name("dave"), "user 'dave' is missing")

assert_equal(expected, actual,message)

assert_not_equal(expected, actual,message)

Fails unless expected and actual are/are not equal.

assert_equal(3, Product.count)

assert_not_equal(0, User.count, "no users in database")

assert_nil(object,message)

assert_not_nil(object,message)

Fails unless object is/is not nil.

assert_nil(User.find_by_name("willard"))

assert_not_nil(User.find_by_name("henry"))

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/rails2/code/depot_r/test/unit/cart_test1.rb
http://www.pragmaticprogrammer.com/titles/rails2

FUNCTIONAL TESTING OF CONTROLLERS 199

assert_in_delta(expected_float, actual_float, delta,message)

Fails unless the two floating-point numbers are within delta of each other.

Preferred over assert_equal because floats are inexact.

assert_in_delta(1.33, line_item.discount, 0.005)

assert_raise(Exception, ...,message) { block... }

assert_nothing_raised(Exception, ...,message) { block... }

Fails unless the block raises/does not raise one of the listed exceptions.

assert_raise(ActiveRecord::RecordNotFound) { Product.find(bad_id) }

assert_match(pattern, string,message)

assert_no_match(pattern, string,message)

Fails unless string is matched/not matched by the regular expression in

pattern. If pattern is a string, then it is interpreted literally—no regular
expression metacharacters are honored.

assert_match(/flower/i, user.town)

assert_match("bang*flash", user.company_name)

assert_valid(activerecord_object)

Fails unless the supplied Active Record object is valid—that is, it passes

its validations. If validation fails, the errors are reported as part of the

assertion failure message.

user = Account.new(:name => "dave", :email => 'secret@pragprog.com')

assert_valid(user)

flunk(message)

Fails unconditionally.

unless user.valid? || account.valid?

flunk("One of user or account should be valid")

end

Ruby’s unit testing framework provides even more assertions, but these tend

to be used infrequently when testing Rails applications, so we won’t discuss

them here. You’ll find them in the documentation for Test::Unit.2 Additionally,

Rails provides support for testing an application’s routing. We describe that

starting on page 424.

13.3 Functional Testing of Controllers

Controllers direct the show. They receive incoming web requests (typically user
input), interact with models to gather application state, and then respond by

causing the appropriate view to display something to the user. So when we’re

testing controllers, we’re making sure that a given request is answered with an

2. At http://ruby-doc.org/stdlib/libdoc/test/unit/rdoc/classes/Test/Unit/Assertions.html, for example

CLICK HERE to purchase this book now.

http://ruby-doc.org/stdlib/libdoc/test/unit/rdoc/classes/Test/Unit/Assertions.html
http://www.pragmaticprogrammer.com/titles/rails2

FUNCTIONAL TESTING OF CONTROLLERS 200

appropriate response. We still need models, but we already have them covered

with unit tests.

Rails calls something that tests a single controller a functional test. The Depot

application has four controllers, each with a number of actions. There’s a lot
here that we could test, but we’ll work our way through some of the high

points. Let’s start where the user starts—logging in.

Login

It wouldn’t be good if anybody could come along and administer the Depot.
Although we may not have a sophisticated security system, we’d like to make

sure that the login controller at least keeps out the riffraff.

Because the LoginController was created with the generate controller script, Rails

has a test stub waiting for us in the test/functional directory.

Download depot_r/test/functional/login_controller_test.rb

require File.dirname(__FILE__) + '/../test_helper'

require 'login_controller'

Re-raise errors caught by the controller.

class LoginController; def rescue_action(e) raise e end; end

class LoginControllerTest < Test::Unit::TestCase

def setup

@controller = LoginController.new

@request = ActionController::TestRequest.new

@response = ActionController::TestResponse.new

end

Replace this with your real tests.

def test_truth

assert true

end

end

The key to functional tests is the setup method. It initializes three instance

variables needed by every functional test.

• @controller contains an instance of the controller under test.

• @request contains a request object. In a running, live application, the

request object contains all the details and data from an incoming request.

It contains the HTTP header information, POST or GET data, and so on.
In a test environment, we use a special test version of the request object

that can be initialized without needing a real, incoming HTTP request.

• @response contains a response object. Although we haven’t seen response

objects as we’ve been writing our application, we’ve been using them.
Every time we send a request back to a browser, Rails is populating

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/rails2/code/depot_r/test/functional/login_controller_test.rb
http://www.pragmaticprogrammer.com/titles/rails2

FUNCTIONAL TESTING OF CONTROLLERS 201

a response object behind the scenes. Templates render their data into

a response object, the status codes we want to return are recorded in

response objects, and so on. After our application finishes processing a

request, Rails takes the information in the response object and uses it to

send a response back to the client.

The request and response objects are crucial to the operation of our functional

tests—using them means we don’t have to fire up a real web server to run

controller tests. That is, functional tests don’t necessarily need a web server,

a network, or a client.

Index: For Admins Only

Great, now let’s write our first controller test—a test that simply “hits” the

index page.

Download depot_r/test/functional/login_controller_test.rb

def test_index

get :index

assert_response :success

end

The get method, a convenience method loaded by the test helper, simulates

a web request (think HTTP GET) to the index action of the LoginController and

captures the response. The assert_response method then checks whether the

response was successful.

OK, let’s see what happens when we run the test. We’ll use the -n option to

specify the name of a particular test method that we want to run.

depot> ruby test/functional/login_controller_test.rb -n test_index

Loaded suite test/functional/login_controller_test

Started

F

Finished in 0.239281 seconds.

1) Failure:

test_index(LoginControllerTest) [test/functional/login_controller_test.rb:23]:

Expected response to be a <:success>, but was <302>

That seemed simple enough, so what happened? A response code of 302 means

the request was redirected, so it’s not considered a success. But why did it
redirect? Well, because that’s the way we designed the LoginController. It uses a

before filter to intercept calls to actions that aren’t available to users without

an administrative login.

Download depot_r/app/controllers/login_controller.rb

before_filter :authorize, :except => :login

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/rails2/code/depot_r/test/functional/login_controller_test.rb
http://media.pragprog.com/titles/rails2/code/depot_r/app/controllers/login_controller.rb
http://www.pragmaticprogrammer.com/titles/rails2

FUNCTIONAL TESTING OF CONTROLLERS 202

The before filter makes sure that the authorize method is run before the index

action is run.

Download depot_r/app/controllers/application.rb

class ApplicationController < ActionController::Base

Pick a unique cookie name to distinguish our session data from others'

session :session_key => '_depot_session_id'

private

def authorize

unless User.find_by_id(session[:user_id])

flash[:notice] = "Please log in"

redirect_to(:controller => "login", :action => "login")

end

end

end

Since we haven’t logged in, a valid user isn’t in the session, so the request gets
redirected to the login action. According to authorize, the resulting page should

include a flash notice telling us that we need to log in. OK, so let’s rewrite the

functional test to capture that flow.

Download depot_r/test/functional/login_controller_test.rb

def test_index_without_user

get :index

assert_redirected_to :action => "login"

assert_equal "Please log in", flash[:notice]

end

This time when we request the index action, we expect to get redirected to the

login action and see a flash notice generated by the view.

depot> ruby test/functional/login_controller_test.rb

Loaded suite test/functional/login_controller_test

Started

.

Finished in 0.0604571 seconds.

1 tests, 3 assertions, 0 failures, 0 errors

Indeed, we get what we expect.3 Now we know the administrator-only actions

are off limits until a user has logged in (the before filter is working). Let’s try

looking at the index page if we have a valid user.

Recall that the application stores the id of the currently logged in user into the

session, indexed by the :user_id key. So, to fake out a logged in user, we just

3. With one small exception. Our test method contains two assertions, but the console log shows
three assertions passed. That’s because the assert_redirected_to method uses two low-level asser-
tions internally.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/rails2/code/depot_r/app/controllers/application.rb
http://media.pragprog.com/titles/rails2/code/depot_r/test/functional/login_controller_test.rb
http://www.pragmaticprogrammer.com/titles/rails2

FUNCTIONAL TESTING OF CONTROLLERS 203

need to set a user id into the session before issuing the index request. Our only

problem now is knowing what to use for a user id.

We can’t just stick a random number in there, because the application con-

troller’s authorize method fetches the user row from the database based on its
value. It looks as if we’ll need to populate the users table with something valid.

And that gives us an excuse to look at dynamic fixtures.

Dynamic Fixtures

We’ll create a users.yml test fixture to add a row to the users table. We’ll call the
user “dave.”

dave:

id: 1

name: dave

salt: NaCl

hashed_password: ???

All goes well until the hashed_password line. What should we use as a value? In
the real table, it is calculated using the encrypted_password method in the user

class. This takes a clear-text password and a salt value and creates an SHA1

hash value.

Now, one approach would be to crank up script/console and invoke that method
manually. We could then copy the value returned by the method, pasting it

into the fixture file. That’d work, but it’s a bit obscure, and our tests might

break if we change the password generation mechanism. Wouldn’t it be nice if

we could use our application’s code to generate the hashed password as data
is loaded into the database? Well, have a look at the following.

Download depot_r/test/fixtures/users.yml

<% SALT = "NaCl" unless defined?(SALT) %>

dave:

id: 1

name: dave

salt: <%= SALT %>

hashed_password: <%= User.encrypted_password('secret', SALT) %>

The syntax on the hashed_password line should look familiar: the <%=...%> direc-

tive is the same one we use to substitute values into templates. It turns out

that Rails supports these substitutions in test fixtures. That’s why we call

them dynamic.

Now we’re ready to test the index action again. We have to remember to add

the fixtures directive to the login controller test class.

fixtures :users

And then we write the test method.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/rails2/code/depot_r/test/fixtures/users.yml
http://www.pragmaticprogrammer.com/titles/rails2

FUNCTIONAL TESTING OF CONTROLLERS 204

Download depot_r/test/functional/login_controller_test.rb

def test_index_with_user

get :index, {}, { :user_id => users(:dave).id }

assert_response :success

assert_template "index"

end

The key concept here is the call to the get method. Notice that we added a

couple of new parameters after the action name. Parameter two is an empty
hash—this represents the HTTP parameters to be passed to the action. Param-

eter three is a hash that’s used to populate the session data. This is where we

use our user fixture, setting the session entry :user_id to be our test user’s id.

Our test then asserts that we had a successful response (not a redirection) and

that the action rendered the index template. (We’ll look at all these assertions
in more depth shortly.)

Logging In

Now that we have a user in the test database, let’s see whether we can log in

as that user. If we were using a browser, we’d navigate to the login form, enter
our user name and password, and then submit the fields to the login action

of the login controller. We’d expect to get redirected to the index listing and to

have the session contain the id of our test user neatly tucked inside. Here’s

how we do this in a functional test.

Download depot_r/test/functional/login_controller_test.rb

def test_login

dave = users(:dave)

post :login, :name => dave.name, :password => 'secret'

assert_redirected_to :action => "index"

assert_equal dave.id, session[:user_id]

end

Here we used a post method to simulate entering form data and passed the
name and password form field values as parameters.

What happens if we try to log in with an invalid password?

Download depot_r/test/functional/login_controller_test.rb

def test_bad_password

dave = users(:dave)

post :login, :name => dave.name, :password => 'wrong'

assert_template "login"

end

As expected, rather than getting redirected to the index listing, our test user

sees the login form again.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/rails2/code/depot_r/test/functional/login_controller_test.rb
http://media.pragprog.com/titles/rails2/code/depot_r/test/functional/login_controller_test.rb
http://media.pragprog.com/titles/rails2/code/depot_r/test/functional/login_controller_test.rb
http://www.pragmaticprogrammer.com/titles/rails2

FUNCTIONAL TESTING OF CONTROLLERS 205

Functional Testing Conveniences

That was a brisk tour through how to write a functional test for a controller.

Along the way, we used a number of support methods and assertions included

with Rails that make your testing life easier. Before we go much further, let’s

look at some of the Rails-specific conveniences for testing controllers.

HTTP Request Methods

The methods get, post, put, delete, and head are used to simulate an incoming

HTTP request method of the same name. They invoke the given action and
make the response available to the test code.

Each of these methods takes the same four parameters. Let’s take a look at

get, as an example.

get(action, parameters = nil, session = nil, flash = nil)

Executes an HTTP GET request for the given action. The @response object

will be set on return. The parameters are as follows.

• action: The action of the controller being requested

• parameters: An optional hash of request parameters

• session: An optional hash of session variables

• flash: An optional hash of flash messages

Examples:

get :index

get :add_to_cart, :id => products(:ruby_book).id

get :add_to_cart, { :id => products(:ruby_book).id },

{ :session_key => 'session_value'}, { :message => "Success!" }

You’ll often want to post form data within a function test. To do this, you’ll
need to know that the data is returned as a hash nested inside the params

hash. The key for this subhash is the name given when you created the form.

Inside the subhash are key/value pairs corresponding to the fields in the form.

So, to post a form to the edit action containing User model data, where the data

contains a name and an age, you could use

post :edit, :user => { :name => "dave", :age => "24" }

You can simulate an xml_http_request using

xhr(method, action, parameters, session, flash)

xml_http_request(method, action, parameters, session, flash)

Simulates an xml_http_request from a JavaScript client to the server. The

first parameter will be :post or :get. The remaining parameters are identi-

cal to those passed to the get method described previously.

xhr(:post, :add_to_cart, :id => 11)

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/rails2

FUNCTIONAL TESTING OF CONTROLLERS 206

Assertions

In addition to the standard assertions we listed back on page 198, additional

functional test assertions are available after executing a request.

assert_dom_equal(expected_html, actual_html,message)

assert_dom_not_equal(expected_html, actual_html,message)

Compare two strings containing HTML, succeeding if the two are rep-

resented/not represented by the same document object model. Because

the assertion compares a normalized version of both strings, it is fragile
in the face of application changes. Consider using assert_select instead.

expected = "<html><body><h1>User Unknown</h1></body></html>"

assert_dom_equal(expected, @response.body)

assert_response(type,message)

Asserts that the response is a numeric HTTP status or one of the following
symbols. These symbols can cover a range of response codes (so :redirect

means a status of 300–399).

• :success

• :redirect

• :missing

• :error

Examples:

assert_response :success

assert_response 200

assert_redirected_to(options,message)

Asserts that the redirection options passed in match those of the redirect
called in the last action. You can also pass a simple string, which is

compared to the URL generated by the redirection.

Examples:

assert_redirected_to :controller => 'login'

assert_redirected_to :controller => 'login', :action => 'index'

assert_redirected_to "http://my.host/index.html"

assert_template(expected,message)

Asserts that the request was rendered with the specified template file.

Examples:

assert_template 'store/index'

assert_select(...)

See Section 13.3, Testing Response Content, on page 208.

assert_tag(...)

Deprecated in favor of assert_select.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/rails2

FUNCTIONAL TESTING OF CONTROLLERS 207

Rails has some additional assertions to test the routing component of your

controllers. We discuss these in Section 20.2, Testing Routing, on page 424.

Variables

After a request has been executed, functional tests can make assertions using
the values in the following variables.

assigns(key=nil)

Instance variables that were assigned in the last action.

assert_not_nil assigns["items"]

The assigns hash must be given strings as index references. For example,

assigns[:items] will not work because the key is a symbol. To use symbols

as keys, use a method call instead of an index reference.

assert_not_nil assigns(:items)

We can test that a controller action found three orders with

assert_equal 3, assigns(:orders).size

session

A hash of objects in the session.

assert_equal 2, session[:cart].items.size

flash

A hash of flash objects currently in the session.

assert_equal "Danger!", flash[:notice]

cookies

A hash of cookies being sent to the user.

assert_equal "Fred", cookies[:name]

redirect_to_url

The full URL that the previous action redirected to.

assert_equal "http://test.host/login", redirect_to_url

Functional Testing Helpers

Rails provides the following helper methods in functional tests.

find_tag(conditions)

Finds a tag in the response, using the same conditions as assert_tag.

get :index

tag = find_tag :tag => "form",

:attributes => { :action => "/store/add_to_cart/993" }

assert_equal "post", tag.attributes["method"]

This is probably better written using assert_select.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/rails2

FUNCTIONAL TESTING OF CONTROLLERS 208

find_all_tag(conditions)

Returns an array of tags meeting the given conditions.

follow_redirect

If the preceding action generated a redirect, this method follows it by
issuing a get request. Functional tests can follow redirects only to their

own controller.

post :add_to_cart, :id => 123

assert_redirect :action => :index

follow_redirect

assert_response :success

fixture_file_upload(path, mime_type)

Create the MIME-encoded content that would normally be uploaded by

a browser <input type="file"...> field. Use this to set the corresponding form

parameter in a post request.

post :report_bug,

:screenshot => fixture_file_upload("screen.png", "image/png")

Testing Response Content

Rails 1.2 introduced a new assertion, assert_select, which allows you to dig into

the structure and content of the responses returned by your application. (It
replaces assert_tag, which is now deprecated.) For example, a functional test

could verify that the response contained a title element containing the text

“Pragprog Books Online Store” with the assertion

assert_select "title", "Pragprog Books Online Store"

For the more adventurous, the following tests that the response contains a

<div> with the id cart. Within that <div> there must be a table containing

three rows. The last <td> in the row with the class total-line must have the

content $57.70.

assert_select "div#cart" do

assert_select "table" do

assert_select "tr", :count => 3

assert_select "tr.total-line td:last-of-type", "$57.70"

end

end

This is clearly powerful stuff. Let’s spend some time looking at it.

assert_select is built around Assaf Arkin’s HTML::Selector library. This library

allows you to navigate a well-formed HTML document using a syntax drawn

heavily from Cascading Style Sheets selectors. On top of the selectors, Rails

layers the ability to perform a set of tests on the resulting nodesets. Let’s start

by looking at the selector syntax.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/rails2

FUNCTIONAL TESTING OF CONTROLLERS 209

Selectors

Selector syntax is complex—probably more complex than regular expressions.

However, its similarity to CSS selector syntax means that you should be able

to find many examples on the Web if the brief summary that follows is too

condensed. In the description that follows, we’ll borrow the W3C terminology
for describing selectors.4

A full selector is called a selector chain. A selector chain is a combination of

one or more simple selectors. Let’s start by looking at the simple selectors.

Simple Selectors

A simple selector consists of an optional type selector, followed by any number

of class selectors, id selectors, attribute selectors, or pseudoclasses.

A type selector is simply the name of a tag in your document. For example, the

type selector

p

matches all <p> tags in your document. (It’s worth emphasizing the word

all—selectors work with sets of document nodes.)

If you omit the type selector, all nodes in the document are selected.

A type selector may be qualified with class selectors, id selectors, attribute

selectors, or pseudoclasses. Each qualifier whittles down the set of nodes that

are selected. Class and ID selectors are easy.

p#some-id # selects the paragraph with id="some-id"

p.some-class # selects paragraph(s) with class="some-class"

Attribute selectors appear between square brackets. The syntax is

p[name] # paragraphs with an attribute name=

p[name=value] # paragraphs with an attribute name=value

p[name^=string] # ... name=value, value starts with 'string'

p[name$=string] # ... name=value, value ends with 'string'

p[name*=string] # ... name=value, value must contain 'string'

p[name~=string] # ... name=value, value must contain 'string'

as a space-separated word

p[name|=string] # ... name=value, value starts 'string'

followed by a space

Let’s look at some examples.

p[class=warning] # all paragraphs with class="warning"

tr[id=total] # the table row with id="total"

4. http://www.w3.org/TR/REC-CSS2/selector.html

CLICK HERE to purchase this book now.

http://www.w3.org/TR/REC-CSS2/selector.html
http://www.pragmaticprogrammer.com/titles/rails2

FUNCTIONAL TESTING OF CONTROLLERS 210

table[cellpadding] # all table tags with a cellpadding attribute

div[class*=error] # all div tags with a class attribute

containing the text error

p[secret][class=shh] # all p tags with both a secret attribute

and a class="shh" attribute

[class=error] # all tags with class="error"

The class and id selectors are shortcuts for class= and id=.

p#some-id # same as p[id=some-id]

p.some-class # same as p[class=some-class]

Chained Selectors
You can combine multiple simple selectors to create chained selectors. These

allow you to describe the relationship between elements. In the descriptions

that follow, sel_1, sel_2, and so on, represent simple selectors.

sel_1 sel_2s

All sel_2s that have a sel_1 as an ancestor. (The selectors are separated

by one or more spaces.)

sel_1 > sel_2s

All sel_2s that have sel_1 as a parent. Thus:

table td # will match all td tags inside table tags

table > td # won't match in well-formed HTML,

as td tags have tr tags as parents

sel_1 + sel_2s

Selects all sel_2s that immediately follow sel_1s. Note that “follow” means
that the two selectors describe peer nodes, not parent/child nodes.

td.price + td.total # select all td nodes with class="total"

that follow a <td class="price">

sel_1 ~ sel_2s

Selects all sel_2s that follow sel_1s.

div#title ~ p # all the p tags that follow a

<div id="title">

sel_1, sel_2s

Selects all elements that are selected by sel_1 or sel_2.

p.warn, p.error # all paragraphs with a class of

warn or error

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/rails2

FUNCTIONAL TESTING OF CONTROLLERS 211

Pseudoclasses

Pseudo-classes typically allow you to select elements based on their position

(although there are some exceptions). They are all prefixed with a colon.

:root

Selects only the root element. Sometimes useful when testing an XML

response.

order:root # only returns a selection if the

root of the response is <order>

sel:empty

Selects only if sel has neither children nor text content.

div#error:empty # selects the node <div id="error">

only if it is empty

sel_1 sel_2:only-child

Selects the nodes that are the only children of sel_1 nodes.

div :only-child # select the child nodes of divs that

have only one child

sel_1 sel_2:first-child

Selects all sel_2 nodes that are the first children of sel_1 nodes.

table tr:first-child # the first row from each table

sel_1 sel_2:last-child

Selects all sel_2 nodes that are the last children of sel_1 nodes.

table tr:last-child # the last row from each table

sel_1 sel_2:nth-child(n)

Selects all sel_2 nodes that are the n
th child of sel_1 nodes, where n

counts from 1. Contrast this with nth-of-type, described later.

table tr:nth-child(2) # the second row of every table

div p:nth-child(2) # the second element of each div

if that element is a <p>

sel_1 sel_2:nth-last-child(n)

Selects all sel_2 nodes that are the n
th child of sel_1 nodes, counting

from the end.

table tr:nth-last-child(2) # the second to last row in every table

sel_1 sel_2:only-of-type

Selects all sel_2 nodes that are the only children of sel_1 nodes. (That is,

the sel_1 node may have multiple children but only one of type sel_2.)

div p:only-of-type # all the paragraphs in divs that

contain just one paragraph

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/rails2

FUNCTIONAL TESTING OF CONTROLLERS 212

sel_1 sel_2:first-of-type

Selects the first node of type sel_2 whose parents are sel_1 nodes.

div.warn p:first-of-type # the first paragraph in <div class="warn">

sel_1 sel_2:last-of-type

Selects the last node of type sel_2 whose parents are sel_1 nodes.

div.warn p:last-of-type # the last paragraph in <div class="warn">

sel_1 sel_2:nth-of-type(n)

Selects all sel_2 nodes that are the n
th child of sel_1 nodes, but only

counting nodes whose type matches sel_2.

div p:nth-of-type(2) # the second paragraph of each div

sel_1 sel_2:nth-last-of-type(n)

Selects all sel_2 nodes that are the n
th child of sel_1 nodes, counting

from the end, but only counting nodes whose type matches sel_2.

div p:nth-last-of-type(2) # the second to last paragraph of each div

The numeric parameter to the nth-xxx selectors can be of the form:

d (a number)

Count d nodes.

an+d (nodes from groups)
Divide the child nodes into groups of a, and then select the d

th node from

each group.

div#story p:nth-child(3n+1) # every third paragraph of

the div with id="story"

-an+d (nodes from groups)
Divide the child nodes into groups of a, and then select the first node of

up to d groups. (Yes, this is a strange syntax.)

div#story p:nth-child(-n+2) # The first two paragraphs

odd (odd-numbered nodes)
even (even-numbered nodes)

Alternating child nodes.

div#story p:nth-child(odd) # paragraphs 1, 3, 5, ...

div#story p:nth-child(even) # paragraphs 2, 4, 6, ...

Finally, you can invert the sense of any selector.

:not(sel)

Selects all nodes that are not selected by sel.

div :not(p) # all the non-paragraph nodes of all divs

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/rails2

FUNCTIONAL TESTING OF CONTROLLERS 213

Now we know how to select nodes in the response, let’s see how to write asser-

tions to test the response’s content.

Response-Oriented Assertions

The assert_select assertion can be used within functional and integration tests.
At its simplest it takes a selector. The assertion passes if at least one node in

the response matches, and it fails if no nodes match.

assert_select "title" # does our response contain a <title> tag

and a <div class="cart"> with a

child <div id="cart-title">

assert_select "div.cart > div#cart-title"

As well as simply testing for the presence of selected nodes, you can compare

their content with a string or regular expression. The assertion passes only if

all selected nodes equal the string or match the regular expression.

assert_select "title", "Pragprog Online Book Store"

assert_select "title", /Online/

If instead you pass a number or a Ruby range, the assert passes if the number

of nodes is equal to the number or falls within the range.

assert_select "title", 1 # must be just one title element

assert_select "div#main div.entry", 1..10 # one to 10 entries on a page

Passing false as the second parameter is equivalent to passing zero: the asser-

tion succeeds if no nodes are selected.

You can also pass a hash after the selector, allowing you to test multiple con-
ditions. For example, to test that there is exactly one title node and that node

matches the regular expression /pragprog/, you could use

assert_select "title", :count => 1, :text => /pragprog/

The hash may contain the following keys:

:text =>S | R Either a string or a regular expression, which must match the

contents of the node.

:count =>n Exactly n nodes must have been selected.
:minimum =>n At least n nodes must have been selected.

:maximum =>n At most n nodes must have been selected.

Nesting Select Assertions
Once assert_select has chosen a set of nodes and passed any tests associated

with those nodes, you may want to perform additional tests within that node-

set. For example, we started this section with a test that checked that the page

contained a <div> with an id of cart. This <div> should contain a table which

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/rails2

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles continue
the well-known Pragmatic Programmer style, and continue to garner awards and rave reviews. As
development gets more and more difficult, the Pragmatic Programmers will be there with more titles
and products to help you stay on top of your game.

Visit Us Online
Agile Web Development with Rails

http://pragmaticprogrammer.com/titles/rails2

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragmaticprogrammer.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragmaticprogrammer.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact with our wiki,
and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragmaticprogrammer.com/news

Check out the latest pragmatic developments in the news.

Buy the Book
If you liked this PDF, perhaps you’d like to have a paper copy of the book. It’s available for purchase
at our store: pragmaticprogrammer.com/titles/rails2.

Contact Us
Phone Orders: 1-800-699-PROG (+1 919 847 3884)
Online Orders: www.pragmaticprogrammer.com/catalog

Customer Service: orders@pragmaticprogrammer.com

Non-English Versions: translations@pragmaticprogrammer.com

Pragmatic Teaching: academic@pragmaticprogrammer.com

Author Proposals: proposals@pragmaticprogrammer.com

http://pragmaticprogrammer.com/titles/rails2
http://pragmaticprogrammer.com/updates
http://pragmaticprogrammer.com/community
http://pragmaticprogrammer.com/news
pragmaticprogrammer.com/titles/rails2
www.pragmaticprogrammer.com/catalog

