
Extracted from:

Agile Web Development with Rails
Third Edition

This PDF file contains pages extracted from Agile Web Development with Rails, published by the
Pragmatic Bookshelf. For more information or to purchase a paperback or PDF copy, please visit

http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This is available only in
online versions of the books. The printed versions are black and white. Pagination might vary

between the online and printer versions; the content is otherwise identical.

Copyright © 2009 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any means,
electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragprog.com

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and The Pragmatic Program-
mers, LLC was aware of a trademark claim, the designations have been printed in initial capital
letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer, Pragmatic Program-
ming, Pragmatic Bookshelf and the linking g device are trademarks of The Pragmatic Programmers,
LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes no
responsibility for errors or omissions, or for damages that may result from the use of information
(including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create better
software and have more fun. For more information, as well as the latest Pragmatic titles, please
visit us at

http://www.pragprog.com

Copyright © 2009 The Pragmatic Programmers LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form, or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the
prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 1-934356-16-6

ISBN-13: 978-1-9343561-6-6

Printed on acid-free paper.

P2.0 printing, April 2009

Version: 2009-4-28

http://www.pragprog.com

In this chapter, we’ll see

• writing our own views,

• using layouts to decorate pages,

• integrating CSS,

• using helpers, and

• linking pages to actions.

Chapter 7

Task B: Catalog Display
All in all, it’s been a successful day so far. We gathered the initial requirements

from our customer, documented a basic flow, worked out a first pass at the

data we’ll need, and put together the maintenance page for the Depot applica-

tion’s products. We even managed to cap off the morning with a decent lunch.

Thus fortified, it’s on to our second task. We chatted about priorities with our

customer, and she said she’d like to start seeing what the application looks

like from the buyer’s point of view. Our next task is to create a simple catalog

display.

This also makes a lot of sense from our point of view. Once we have the prod-

ucts safely tucked into the database, it should be fairly simple to display them.

It also gives us a basis from which to develop the shopping cart portion of the

code later.

We should also be able to draw on the work we just did in the product main-

tenance task—the catalog display is really just a glorified product listing. So,

let’s get started.

7.1 Iteration B1: Creating the Catalog Listing

We’ve already created the products controller, used by the seller to administer

the Depot application. Now it’s time to create a second controller, one that
interacts with the paying customers. Let’s call it Store.

depot> ruby script/generate controller store index

exists app/controllers/

exists app/helpers/

create app/views/store

exists test/functional/

create app/controllers/store_controller.rb

create test/functional/store_controller_test.rb

create app/helpers/store_helper.rb

create app/views/store/index.html.erb

ITERATION B1: CREATING THE CATALOG LISTING 98

Just as in the previous chapter, where we used the generate utility to create

a controller and associated scaffolding to administer the products, here we’ve

asked it to create a controller (class StoreController in the file store_controller.rb)

containing a single action method, index.

So, why did we choose to call our first method index? Well, just like most web

servers, if you invoke a Rails controller and don’t specify an explicit action,

Rails automatically invokes the index action. In fact, let’s try it. Point a browser

at http://localhost:3000/store, and up pops our web page:1

It might not make us rich, but at least we know everything is wired together
correctly. The page even tells us where to find the template file that draws this

page.

Let’s start by displaying a simple list of all the products in our database. We

know that eventually we’ll have to be more sophisticated, breaking them into
categories, but this will get us going.

We need to get the list of products out of the database and make it available to

the code in the view that will display the table. This means we have to change

the index method in store_controller.rb. We want to program at a decent level of
abstraction, so let’s just assume we can ask the model for a list of the products

we can sell:

Download depot_d/app/controllers/store_controller.rb

class StoreController < ApplicationController

def index

@products = Product.find_products_for_sale

end

end

Obviously, this code won’t run as it stands. We need to define the method

find_products_for_sale in the product.rb model. The code that follows uses the

1. If you instead see a message saying No route matches..., you may need to stop and restart your
application at this point. Press Ctrl-C in the console window in which you ran script/server, and
then rerun the command.

CLICK HERE to purchase this book now.

http://localhost:3000/store
http://media.pragprog.com/titles/rails3/code/depot_d/app/controllers/store_controller.rb
http://www.pragprog.com/titles/rails3

ITERATION B1: CREATING THE CATALOG LISTING 99

Rails find method. The :all parameter tells Rails that we want all rows that

match the given condition. We asked our customer whether she had a prefer-

ence regarding the order things should be listed, and we jointly decided to see

what happened if we displayed the products in alphabetical order, so the code

does a sort on title: def self.xxx
→֒ page 672

Download depot_d/app/models/product.rb

class Product < ActiveRecord::Base

def self.find_products_for_sale

find(:all, :order => "title")

end

validation stuff...

The find method returns an array containing a Product object for each row
returned from the database. We use its optional :order parameter to have these

rows sorted by their title. The find_products_for_sale method simply passes this

array back to the controller. Note that we made find_products_for_sale a class

method by putting self. in front of its name in the definition. We did this because

we want to call it on the class as a whole, not on any particular instance—we’ll
use it by saying Product.find_products_for_sale.

Now we need to write our view template. To do this, edit the file index.html.erb

in app/views/store. (Remember that the path name to the view is built from the

name of the controller (store) and the name of the action (index). The .html.erb

part signifies an ERb template that produces an HTML result.)

Download depot_d/app/views/store/index.html.erb

<h1>Your Pragmatic Catalog</h1>

<% for product in @products -%>

<div class="entry">

<%= image_tag(product.image_url) %>

<h3><%=h product.title %></h3>

<%= product.description %>

<div class="price-line">

<%= product.price %>

</div>

</div>

<% end %>

This time, we used the h(string) method to escape any HTML element in the

product title but did not use it to escape the description. This allows us to add

HTML stylings to make the descriptions more interesting for our customers.2

2. This decision opens a potential security hole, but because product descriptions are created by
people who work for our company, we think that the risk is minimal. See Section 27.5, Protecting

Your Application from XSS, on page 646 for details.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/rails3/code/depot_d/app/models/product.rb
http://media.pragprog.com/titles/rails3/code/depot_d/app/views/store/index.html.erb
http://www.pragprog.com/titles/rails3

ITERATION B1: CREATING THE CATALOG LISTING 100

Figure 7.1: Our first (ugly) catalog page

In general, try to get into the habit of typing <%=h ... %> in templates and then

removing the h only when you’ve convinced yourself it’s safe to do so.

We’ve also used the image_tag helper method. This generates an HTML

tag using its argument as the image source.

Hitting Refresh brings up the display in Figure 7.1. It’s pretty ugly, because we

haven’t yet included the CSS stylesheet. The customer happens to be walking

by as we ponder this, and she points out that she’d also like to see a decent-

looking title and sidebar on public-facing pages.

At this point in the real world, we’d probably want to call in the design folks—

we’ve all seen too many programmer-designed websites to feel comfortable

inflicting another on the world. But Pragmatic Web Designer is off getting

inspiration on a beach somewhere and won’t be back until later in the year, so
let’s put a placeholder in for now. It’s time for an iteration.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/rails3

ITERATION B2: ADDING A PAGE LAYOUT 101

7.2 Iteration B2: Adding a Page Layout

The pages in a typical website often share a similar layout—the designer will

have created a standard template that is used when placing content. Our job

is to add this page decoration to each of the store pages.

Fortunately, in Rails we can define layouts. A layout is a template into which

we can flow additional content. In our case, we can define a single layout for

all the store pages and insert the catalog page into that layout. Later we can

do the same with the shopping cart and checkout pages. Because there’s only
one layout, we can change the look and feel of this entire section of our site

by editing just one file. This makes us feel better about putting a placeholder

in for now; we can update it when the designer eventually returns from the

islands.

There are many ways of specifying and using layouts in Rails. We’ll choose the

simplest for now. If we create a template file in the app/views/layouts directory

with the same name as a controller, all views rendered by that controller will

use that layout by default. So, let’s create one now. Our controller is called
store, so we’ll name the layout store.html.erb:

Download depot_e/app/views/layouts/store.html.erb

Line 1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
- "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
- <html>
- <head>
5 <title>Pragprog Books Online Store</title>
- <%= stylesheet_link_tag "depot", :media => "all" %>
- </head>
- <body id="store">
- <div id="banner">

10 <%= image_tag("logo.png") %>
- <%= @page_title || "Pragmatic Bookshelf" %>
- </div>
- <div id="columns">
- <div id="side">

15 Home

- Questions

- News

- Contact

- </div>

20 <div id="main">
- <%= yield :layout %>
- </div>
- </div>
- </body>

25 </html>

Apart from the usual HTML gubbins, this layout has three Rails-specific items.

Line 6 uses a Rails helper method to generate a <link> tag to our depot.css

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/rails3/code/depot_e/app/views/layouts/store.html.erb
http://www.pragprog.com/titles/rails3

ITERATION B2: ADDING A PAGE LAYOUT 102

stylesheet. On line 11, we set the page heading to the value in the instance

variable @page_title. The real magic, however, takes place on line 21. When we

invoke yield, passing it the name :layout, Rails automatically substitutes in the

page-specific content—the stuff generated by the view invoked by this request.

In our case, this will be the catalog page generated by index.html.erb.3

To make this all work, we need to add the following to our depot.css stylesheet:

Download depot_e/public/stylesheets/depot.css

/* Styles for main page */

#banner {

background: #9c9;

padding-top: 10px;

padding-bottom: 10px;

border-bottom: 2px solid;

font: small-caps 40px/40px "Times New Roman", serif;

color: #282;

text-align: center;

}

#banner img {

float: left;

}

#columns {

background: #141;

}

#main {

margin-left: 13em;

padding-top: 4ex;

padding-left: 2em;

background: white;

}

#side {

float: left;

padding-top: 1em;

padding-left: 1em;

padding-bottom: 1em;

width: 12em;

background: #141;

}

#side a {

color: #bfb;

font-size: small;

}

3. Rails also sets the variable @content_for_layout to the results of rendering the action, so you can
also substitute this value into the layout in place of the yield. This was the original way of doing it
(and we personally find it more readable). Using yield is considered sexier.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/rails3/code/depot_e/public/stylesheets/depot.css
http://www.pragprog.com/titles/rails3

ITERATION B3: USING A HELPER TO FORMAT THE PRICE 103

Figure 7.2: Catalog with layout added

Hit Refresh, and the browser window looks something like Figure 7.2. It won’t

win any design awards, but it’ll show our customer roughly what the final page
will look like.

7.3 Iteration B3: Using a Helper to Format the Price

There’s a problem with our catalog display. The database stores the price as a

number, but we’d like to show it as dollars and cents. A price of 12.34 should

be shown as $12.34, and 13 should display as $13.00.

One solution would be to format the price in the view. For example, we could
say this:

<%= sprintf("$%0.02f", product.price) %>

This would work, but it embeds knowledge of currency formatting into the

view. Should we want to internationalize the application later, this would be a
maintenance problem.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/rails3

ITERATION B4: LINKING TO THE CART 104

Instead, let’s use a helper method to format the price as a currency. Rails has

an appropriate one built in—it’s called number_to_currency.

Using our helper in the view is simple: in the index template, we change this:

<%= product.price %>

to the following:

<%= number_to_currency(product.price) %>

Sure enough, when we hit Refresh, we see a nicely formatted price:

7.4 Iteration B4: Linking to the Cart

Our customer is really pleased with our progress. We’re still on the first day of

development, and we have a halfway decent-looking catalog display. However,

she points out that we’ve forgotten a minor detail—there’s no way for anyone

to buy anything at our store. We forgot to add any kind of Add to Cart link to

our catalog display.

Back on page 61, we used the link_to helper to generate links from a Rails view

back to another action in the controller. We could use this same helper to put

an Add to Cart link next to each product on the catalog page. As we saw on

page 95, this is dangerous. The problem is that the link_to helper generates an
HTML tag. When you click the corresponding link, your browser

generates an HTTP GET request to the server. And HTTP GET requests are not

supposed to change the state of anything on the server—they’re to be used

only to fetch information.

We previously showed the use of :method => :delete as one solution to this

problem. Rails provides a useful alternative: the button_to method also links a

view back to the application, but it does so by generating an HTML form that

contains just a single button. When the user clicks the button, an HTTP POST

request is generated. And a POST request is just the ticket when we want to
do something like add an item to a cart.

Let’s add the Add to Cart button to our catalog page:

Download depot_e/app/views/store/index.html.erb

<h1>Your Pragmatic Catalog</h1>

<% for product in @products -%>

<div class="entry">

<%= image_tag(product.image_url) %>

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/rails3/code/depot_e/app/views/store/index.html.erb
http://www.pragprog.com/titles/rails3

ITERATION B4: LINKING TO THE CART 105

<h3><%=h product.title %></h3>

<%= product.description %>

<div class="price-line">

<%= number_to_currency(product.price) %>

<%= button_to "Add to Cart" %>

</div>

</div>

<% end %>

There’s one more formatting issue. button_to creates an HTML <form>, and
that form contains an HTML <div>. Both of these are normally block elements,

which will appear on the next line. We’d like to place them next to the price,

so we need a little CSS magic to make them inline:

Download depot_f/public/stylesheets/depot.css

#store .entry form, #store .entry form div {

display: inline;

}

Now our index page looks like Figure 7.3, on the following page. Of course,

if we push the button now, nothing will happen because the button has no

action associated with it. So, that’s what we will have to fix next.

What We Just Did

We’ve put together the basis of the store’s catalog display. The steps were as

follows:

1. Create a new controller to handle customer-centric interactions.

2. Implement the default index action.

3. Add a class method to the Product model to provide a list of items for sale.

4. Implement a view (an .html.erb file) and a layout to contain it (another

.html.erb file).

5. Use a helper to format prices the way we want.

6. Add a button to each item to allow folks to add it to their carts.

7. Make a simple modification to a stylesheet.

It’s time to check it all in and move on to the next task, namely, making the

Add to Cart link actually do something!

Playtime

Here’s some stuff to try on your own:

• Add a date and time to the sidebar. It doesn’t have to update; just show

the value at the time the page was displayed.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/rails3/code/depot_f/public/stylesheets/depot.css
http://www.pragprog.com/titles/rails3

ITERATION B4: LINKING TO THE CART 106

Figure 7.3: Now there’s an Add to Cart button.

• Change the application so that clicking a book’s image will also invoke

the yet-to-be-written add_to_cart action. Hint: the first parameter to link_to

is placed in the generated <a> tag, and the Rails helper image_tag con-
structs an HTML tag. Include a call to it as the first parameter

to a link_to call. Be sure to include :method => :post in your html_options on

your call to link_to.

• The full description of the number_to_currency helper method is as follows:

number_to_currency(number, options = {})

Formats a number into a currency string. The options hash can be used

to customize the format of the output. The number can contain a level of

precision using the :precision key; the default is 2. The currency type can

be set using the :unit key (default "$") The unit separator can be set using

the :separator key (default ".") The delimiter can be set using the :delimiter

key (default ",").

number_to_currency(1234567890.50) -> $1,234,567,890.50

number_to_currency(1234567890.506) -> $1,234,567,890.51

number_to_currency(1234567890.50, :unit => "£",

:separator => ",", :delimiter => "")

-> £1234567890,50

Experiment with setting various options, and see the effect on your cat-

alog listing.

(You’ll find hints at http://pragprog.wikidot.com/rails-play-time.)

CLICK HERE to purchase this book now.

http://pragprog.wikidot.com/rails-play-time
http://www.pragprog.com/titles/rails3

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles continue
the well-known Pragmatic Programmer style, and continue to garner awards and rave reviews. As
development gets more and more difficult, the Pragmatic Programmers will be there with more titles
and products to help you stay on top of your game.

Visit Us Online
Agile Web Development with Rails

http://pragprog.com/titles/rails3

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact with our wiki,
and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments in the news.

Buy the Book
If you liked this PDF, perhaps you’d like to have a paper copy of the book. It’s available for purchase
at our store: pragmaticprogrammer.com/titles/rails3.

Contact Us
Phone Orders: 1-800-699-PROG (+1 919 847 3884)
Online Orders: www.pragmaticprogrammer.com/catalog

Customer Service: orders@pragmaticprogrammer.com

Non-English Versions: translations@pragmaticprogrammer.com

Pragmatic Teaching: academic@pragmaticprogrammer.com

Author Proposals: proposals@pragmaticprogrammer.com

http://pragprog.com/titles/rails3
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragmaticprogrammer.com/titles/rails3
www.pragmaticprogrammer.com/catalog

