
Extracted from:

Agile Web Development with Rails 5

This PDF file contains pages extracted from Agile Web Development with Rails 5,
published by the Pragmatic Bookshelf. For more information or to purchase a

paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2016 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Agile Web Development with Rails 5

Sam Ruby
Dave Thomas

David Heinemeier Hansson

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Susannah Davidson Pfalzer (editor)
Potomac Indexing, LLC (index)
Eileen Cohen (copyedit)
Gilson Graphics (layout)
Janet Furlow (producer)

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2016 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-171-1
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—September 2016

https://pragprog.com
support@pragprog.com
rights@pragprog.com

CHAPTER 25

In this chapter, you'll see:
• Adding new classes to your application
• Adding a new templating language

Rails Plugins
Since the beginning of this book, we’ve talked incessantly about convention
over configuration in that Rails has sensible defaults for just about everything.
And more recently in the book, we’ve described Rails in terms of the underlying
gems that you get when you install Rails. Now it is time to put those two
thoughts together and reveal that the initial set of gems that Rails provides
you with is a sensible set of defaults—a group of gems that you can both add
to and change.

With Rails, gems are the primary way in which you plug in new functionality.
Instead of describing this in the abstract, we will select a few plugins and use
them to illustrate different aspects of how plugins are installed and what
plugins can do. The fact that many of these plugins turn out to be immediately
useful for your day-to-day work is simply a bonus!

Let’s start with a simple plugin that can make you money.

Credit Card Processing with Active Merchant
In Iteration G1 on page ? we mentioned that we were temporarily punting
on handling credit cards. Being able to charge a customer is clearly an
important part of taking an order. Although this functionality isn’t built into
the core of Rails, there is a gem that provides this.

You’ve already seen how you control what gems get loaded by your application;
you do this by editing your Gemfile. Since we are going to cover a number of
such gems in this chapter, let’s add all of the ones that we’ll cover at once.
Add these any place you like; we’ve chosen to do so at the end of the file:

rails50/depot_w/Gemfile
gem 'activemerchant', '~> 1.58'
gem 'haml', '~> 4.0'
gem 'kaminari', '~> 0.16'

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/rails5/code/rails50/depot_w/Gemfile
http://pragprog.com/titles/rails5
http://forums.pragprog.com/forums/rails5

You will note that we follow best practices by specifying a minimum version
and effectively specifying an upper bound on the version number so that this
demo will pick a version that is unlikely to contain an incompatible change.

As for the gems we added, we will cover each in a separate section. This section
will focus on Active Merchant.1

With this in place, we can use the bundle command to install our dependencies:

depot> bundle install

Depending on your operating system and your setup, you may need to run
this command as root.

The bundle command will actually do much more. It will cross-check gem
dependencies, find a configuration that works, and download and install
whatever components are necessary. But this needn’t concern us now; we
added only one component, and we can rest assured that this one is included
in the gems that the bundler installed.

We must do one last thing after updating or installing a new gem: restart the
server. Although Rails does a good job of detecting and keeping up with your
latest changes to your application, it is impossible to predict what needs to
be done when an entire gem is added or replaced. We won’t be using the
server in this section but will shortly. Make sure that the server is running
the Depot application.

To demonstrate this functionality, we will create a small script, which we will
place in the script directory:

rails50/depot_w/script/creditcard.rb
credit_card = ActiveMerchant::Billing::CreditCard.new(

number: '4111111111111111',
month: '8',
year: '2009',
first_name: 'Tobias',
last_name: 'Luetke',
verification_value: '123'

)

puts "Is #{credit_card.number} valid? #{credit_card.valid?}"

There is not much to this script. It creates an instance of an ActiveMerchant::
Billing::CreditCard class and then calls valid?() on this object. Let’s run it:

$ rails runner script/creditcard.rb
Is 4111111111111111 valid? false

1. http://www.activemerchant.org/

• 6

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/rails5/code/rails50/depot_w/script/creditcard.rb
http://www.activemerchant.org/
http://pragprog.com/titles/rails5
http://forums.pragprog.com/forums/rails5

There’s not much to it; it just worked. Note that no require statements were
necessary; simply listing the gem you want in your Gemfile makes the function
available to your application.

At this point, you should be able to see how you could use this functionality
in the Depot application. You know how to add a field to the Orders table via
a migration. You know how to add that field to the view. You know how to
add validation logic to your model, which calls the valid?() method that we used
earlier. If you go to the merchant site, you can even find out how to authorize()
and capture() a payment, though this does require you to have a login and a
password with an existing commerce gateway. Once that is set up, you know
how to call this logic from your controller.

Just think: that was made possible by adding a single line to your Gemfile.

As we stated at the beginning of this chapter, adding gems to your Gemfile is
the preferred way to extend Rails. The advantages of doing so are numerous:
all of your dependencies are tracked by Bundler, are all preloaded for imme-
diate use by your application, and can be packed for easy deployment.

This was a simple addition. Let’s try something more significant, something that
provides an alternative to one of the gems that Rails depends on.

Beautifying Our Markup with Haml
Let’s take a look once again at a simple view that we use in the Depot appli-
cation, in this case, one that presents our storefront:

rails50/depot_v/app/views/store/index.html.erb
<p id="notice"><%= notice %></p>
<h1><%= t('.title_html') %></h1>
<% cache @products do %>

<% @products.each do |product| %>
<% cache product do %>
<div class="entry">

<%= image_tag(product.image_url) %>
<h3><%= product.title %></h3>
<%= sanitize(product.description) %>
<div class="price_line">

<%= number_to_currency(product.price) %>
<%= button_to t('.add_html'),
line_items_path(product_id: product, locale: I18n.locale),
remote: true %>

</div>
</div>

<% end %>
<% end %>

<% end %>

• Click HERE to purchase this book now. discuss

Beautifying Our Markup with Haml • 7

http://media.pragprog.com/titles/rails5/code/rails50/depot_v/app/views/store/index.html.erb
http://pragprog.com/titles/rails5
http://forums.pragprog.com/forums/rails5

This code gets the job done. It contains the basic HTML, with interspersed
bits of Ruby code enclosed in <% and %> markup. Inside that markup, an
equal sign is used to indicate that the value of the expression is to be converted
to HTML and displayed.

This is not only an adequate solution to the problem at hand; it is also all
that is really needed for a large number of Rails applications. Additionally, it
is an ideal place to start for books—like this one—where some knowledge of
HTML may be presumed, but many of the readers are new to Rails and often
to Ruby. The last thing you would want to do in that situation is to introduce
yet another new language.

But now that you are past that learning curve, let’s explore a new language
—one that more closely integrates the production of markup with Ruby code,
namely, HTML Abstraction Markup Language (Haml).

To start with, let’s remove the file we just looked at:

$ rm app/views/store/index.html.erb

In its place, let’s create a new file:

rails50/depot_w/app/views/store/index.html.haml
%p#notice= notice

%h1= t('.title_html')

- cache @products do
- @products.each do |product|

- cache product do
.entry

= image_tag(product.image_url)
%h3= product.title
= sanitize(product.description)
.price_line

%span.price= number_to_currency(product.price)
= button_to t('.add_html'),
line_items_path(product_id: product, locale: I18n.locale),
remote: true

Note the new extension: .html.haml. This indicates that the template is a Haml
template instead of an ERB template.

The first thing you should notice is that the file is considerably smaller. Here’s
a quick overview of what is going on, based on what the first character is on
each line:

• Dashes indicate a Ruby statement that does not produce any output

• Percent signs (%) indicate an HTML element.

• 8

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/rails5/code/rails50/depot_w/app/views/store/index.html.haml
http://pragprog.com/titles/rails5
http://forums.pragprog.com/forums/rails5

• Equal signs (=) indicate a Ruby expression that does produce output to
be displayed. This can be used either on lines by themselves or following
HTML elements.

• Dots (.) and hash (#) characters may be used to define class and id
attributes, respectively. This can be combined with percent signs or used
stand-alone. When used by itself, a div element is implied.

• A comma at the end of a line containing an expression implies a continu-
ation. In the prior example, the button_to() call is continued across two lines.

An important thing to note is that indentation is important in Haml. Returning
to the same level of indentation closes the if statement, loop, or tag that is
currently open. In this example, the paragraph is closed before the h1, the h1
is closed before the first div, but the div elements nest, with the first containing
an h3 element and the second containing both a span and a button_to().

As you can also see, all of your familiar helpers are available, things like t(),
image_tag(), and button_to(). In every meaningful way, Haml is as integrated into
your application as ERB is. You can mix and match: you can have some
templates using ERB and others using Haml.

As you have already installed the Haml gem, there truly is nothing more you
need to do. To see this in action, all you need to do is to visit your storefront.
What you should see should match the following screenshot.

If that looks unremarkable, that’s because it should look exactly like it did
before. And that, if you think about it, is all the more remarkable because
the application layout continues to be implemented as an ERB template and

• Click HERE to purchase this book now. discuss

Beautifying Our Markup with Haml • 9

http://pragprog.com/titles/rails5
http://forums.pragprog.com/forums/rails5

the index is implemented using Haml. Despite this, everything integrates
seamlessly and effortlessly.

Although this clearly is a deeper level of integration than simply adding a
task or a helper, it still is an addition. Next, let’s explore a plugin that changes
a core object in Rails.

• 10

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/rails5
http://forums.pragprog.com/forums/rails5

