
Extracted from:

Agile Web Development with Rails 5.1

This PDF file contains pages extracted from Agile Web Development with Rails 5.1,
published by the Pragmatic Bookshelf. For more information or to purchase a

paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2017 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Agile Web Development with Rails 5.1

Sam Ruby
David Bryant Copeland

with Dave Thomas

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2017 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-251-0
Encoded using the finest acid-free high-entropy binary digits.
Book version: B1.0—May 10, 2017

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Introduction
Ruby on Rails is a framework that makes it easier to develop, deploy, and
maintain web applications. During the ten years since its initial release, Rails
went from being an unknown toy to being a worldwide phenomenon; more
important, it has become the framework of choice for the implementation of
a wide range of applications.

Why is that?

Rails Simply Feels Right
A large number of developers were frustrated with the technologies they were
using to create web applications. It didn’t seem to matter whether they used
Java, PHP, or .NET—there was a growing sense that their jobs were just too
damn hard. And then, suddenly, along came Rails, and Rails was easier.

But easy on its own doesn’t cut it. We’re talking about professional developers
writing real-world websites. They wanted to feel that the applications they
were developing would stand the test of time—that they were designed and
implemented using modern, professional techniques. So, these developers
dug into Rails and discovered it wasn’t just a tool for hacking out sites.

For example, all Rails applications are implemented using the Model-View-
Controller (MVC) architecture. MVC is not a new concept for web develop-
ment—the earliest Java-based web frameworks like Struts base their design
on it. But Rails takes MVC further: when you develop in Rails, you start with
a working application, there’s a place for each piece of code, and all the pieces
of your application interact in a standard way.

Professional programmers write tests. And again, Rails delivers. All Rails
applications have testing support baked right in. As you add functionality to
the code, Rails automatically creates test stubs for that functionality. The
framework makes it easy to test applications, and as a result, Rails applica-
tions tend to get tested.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/rails51
http://forums.pragprog.com/forums/rails51

Rails applications are written in Ruby, a modern, object-oriented language.
Ruby is concise without being unintelligibly terse. You can express ideas
naturally and cleanly in Ruby code. This leads to programs that are easy to
write and (just as important) are easy to read months later.

Rails takes Ruby to the limit, extending it in novel ways that make a program-
mer’s life easier. This makes our programs shorter and more readable. It also
allows us to perform tasks that would normally be done in external configu-
ration files inside the codebase instead. This makes it far easier to see what’s
happening. The following code defines the model class for a project. Don’t
worry about the details for now. Instead, think about how much information
is being expressed in a few lines of code:

class Project < ApplicationRecord
belongs_to :portfolio

has_one :project_manager
has_many :milestones
has_many :deliverables, through: milestones

validates :name, :description, presence: true
validates :non_disclosure_agreement, acceptance: true
validates :short_name, uniqueness: true

end

A major philosophical underpinning of Rails that keeps code short and read-
able is the DRY principle, which stands for Don’t Repeat Yourself (see The
Pragmatic Programmer [HT99]). Every piece of knowledge in a system should
be expressed in one place. Rails uses the power of Ruby to bring that to life.
You’ll find little duplication in a Rails application; you say what you need to
say in one place—a place often suggested by the conventions of the MVC
architecture—and then move on. For programmers used to other web frame-
works, where a simple change to the database schema could involve a dozen
or more code changes, this was a revelation—and it still is.

From that principle, Rails is founded on the Rails Doctrine1, which is a set of
nine pillars that explain why it works the way it does, and how you can be
most successful in using Rails. Not every pillar is relevant when just starting
out with Rails, but one pillar in particular is most important: Convention over
configuration.

Convention over configuration means that Rails has sensible defaults for just
about every aspect of knitting together your application. Follow the conven-
tions, and you can write a Rails application using less code than a typical

1. http://rubyonrails.org/doctrine/

Introduction • iv

• Click HERE to purchase this book now. discuss

http://rubyonrails.org/doctrine/
http://pragprog.com/titles/rails51
http://forums.pragprog.com/forums/rails51

JavaScript application uses in JSON configuration. If you need to override
the conventions, Rails makes that easy, too.

Developers coming to Rails found something else, too. Rails doesn’t merely
play catch-up with the de facto web standards; it helps define them. And
Rails makes it easy for developers to integrate features such as Ajax, modern
JavaScript frameworks, RESTful interfaces, and WebSockets into their code
because support is built in. (And if you’re not familiar with any of these terms,
never fear—you’ll learn what these terms mean as you proceed through the
book).

Rails was extracted from a real-world, commercial application. It turns out
that the best way to create a framework is to find the central themes in a
specific application and then bottle them up in a generic foundation of code.
When you’re developing your Rails application, you’re starting with half of a
really good application already in place.

But there’s something else to Rails—something that’s hard to describe.
Somehow, it feels right. Of course, you’ll have to take our word for that until
you write some Rails applications for yourself (which should be in the next
forty-five minutes or so…). That’s what this book is all about.

Rails Is Agile
The title of this book is Agile Web Development with Rails 5.1. You may be
surprised to discover that we don’t have explicit sections on applying agile
practices X, Y, and Z to Rails coding. In fact, you won’t find mention of many
agile practices, such as Scrum or Extreme Programming, at all.

Over the years since Rails was introduced, the term agile has gone from being
relatively unknown, to being overhyped, to being treated as a formal set of
practices, to receiving a well-deserved amount of pushback against formal
practices that were never meant to be treated as gospel, to a return back to
the original principles.

But it’s more than that. The reason is both simple and subtle. Agility is part
of the fabric of Rails.

Let’s look at the values expressed in the Agile Manifesto (Dave Thomas was
one of the seventeen authors of this document) as a set of four preferences:2

• Individuals and interactions over processes and tools
• Working software over comprehensive documentation

2. http://agilemanifesto.org/

• Click HERE to purchase this book now. discuss

Rails Is Agile • v

http://agilemanifesto.org/
http://pragprog.com/titles/rails51
http://forums.pragprog.com/forums/rails51

• Customer collaboration over contract negotiation
• Responding to change over following a plan

Rails is all about individuals and interactions. It involves no heavy toolsets,
no complex configurations, and no elaborate processes. There are just small
groups of developers, their favorite editors, and chunks of Ruby code. This
leads to transparency; what the developers do is reflected immediately in
what the customer sees. It’s an intrinsically interactive process.

The Rails development process isn’t driven by documents. You won’t find
500-page specifications at the heart of a Rails project. Instead, you’ll find a
group of users and developers jointly exploring their need and the possible
ways of answering that need. You’ll find solutions that change as both the
developers and the users become more experienced with the problems they’re
trying to solve. You’ll find a framework that delivers working software early
in the development cycle. This software might be rough around the edges,
but it lets the users start to get a glimpse of what you’ll be delivering.

In this way, Rails encourages customer collaboration. When customers see
how quickly a Rails project can respond to change, they start to trust that
the team can deliver what’s required, not just what’s been requested. Con-
frontations are replaced by “What if?” sessions.

That’s all tied to the idea of being able to respond to change. The strong,
almost obsessive, way that Rails honors the DRY principle means that changes
to Rails applications impact a lot less code than the same changes would in
other frameworks. And since Rails applications are written in Ruby, where
concepts can be expressed accurately and concisely, changes tend to be
localized and easy to write. The deep emphasis on both unit and system
testing, along with support for test fixtures and stubs during testing, gives
developers the safety net they need when making those changes. With a good
set of tests in place, changes are less nerve-racking.

Rather than constantly trying to tie Rails processes to the Agile principles,
we’ve decided to let the framework speak for itself. As you read through the
tutorial chapters, try to imagine yourself developing web applications this
way, working alongside your customers and jointly determining priorities and
solutions to problems. Then, as you read the more advanced concepts that
follow in Part III, see how the underlying structure of Rails can enable you to
meet your customers’ needs faster and with less ceremony.

One last point about agility and Rails – although it’s probably unprofessional
to mention this – think how much fun the coding will be!

Introduction • vi

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/rails51
http://forums.pragprog.com/forums/rails51

Who This Book Is For
This book is for programmers looking to build and deploy web-based applica-
tions. This includes application programmers who are new to Rails (and
perhaps even new to Ruby) and ones who are familiar with the basics but
want a more in-depth understanding of Rails.

We presume some familiarity with HTML, Cascading Style Sheets (CSS), and
JavaScript—in other words, the ability to view source on web pages. You
needn’t be an expert on these subjects; the most you’ll be expected to do is
to copy and paste material from the book, all of which can be downloaded.

The focus of this book is on the features and choices made by the Rails core
team. More specifically, this book is for users of the Rails framework—people
who tend to be more concerned about what Rails does, as opposed to how it
does it or how to change Rails to suit their needs. Examples of topics not
covered in this book include:

• Introduced in Rails 5, Turbolinks3 is a way to load pages more quickly,
by just loading markup. If you want to know more about how Rails makes
your pages load faster, follow that link. But should you instead be content
with the knowledge that Rails makes pages load fast and not need to know
more, that’s OK too.

• Rails itself is highly hackable and extensible, but this book doesn’t cover
the concept of how to create your own Rails engine.4 If that topic is of
interest to you, we highly recommend Crafting Rails 4 Applications [Val13]
as a follow-on to this book.

• The Rails team has chosen not to include plenty of features—such as user
authentication—in the Rails framework itself. That doesn’t mean that
these features aren’t important, but it generally does mean that there
isn’t a single obvious solution to make as the default for Rails users.

How to Read This Book
The first part of this book makes sure you’re ready. By the time you’re done
with it, you’ll have been introduced to Ruby (the language), you’ll have been
exposed to an overview of Rails, you’ll have Ruby and Rails installed, and
you’ll have verified the installation with a simple example.

3. https://github.com/turbolinks/turbolinks/blob/master/README.md
4. http://guides.rubyonrails.org/engines.html

• Click HERE to purchase this book now. discuss

Who This Book Is For • vii

https://github.com/turbolinks/turbolinks/blob/master/README.md
http://guides.rubyonrails.org/engines.html
http://pragprog.com/titles/rails51
http://forums.pragprog.com/forums/rails51

The next part takes you through the concepts behind Rails via an extended
example: we build a simple online store. It doesn’t take you one by one through
each component of Rails (“here’s a chapter on models, here’s a chapter on
views,” and so forth). These components are designed to work together, and
each chapter in this section tackles a specific set of related tasks that involve
a number of these components working together.

Most folks seem to enjoy building the application along with the book. If you
don’t want to do all that typing, you can cheat and download the source code
(a compressed tar archive or a zip file).5

Be careful if you ever choose to copy files directly from the download into your
application: if the timestamps on the files are old, the server won’t know that
it needs to pick up these changes. You can update the timestamps using the
touch command on either Mac OS X or Linux, or you can edit the file and save
it. Alternatively, you can restart your Rails server.

Part III, Rails in Depth, on page ? surveys the entire Rails ecosystem. This
starts with the functions and facilities of Rails that you’ll now be familiar
with. It then covers a number of key dependencies that the Rails framework
makes use of that contribute directly to the overall functionality that the Rails
framework delivers.

Along the way, you’ll see various conventions we’ve adopted:

Live code
Most of the code snippets we show come from full-length, running exam-
ples that you can download.

To help you find your way, if a code listing can be found in the download,
you’ll see a bar before the snippet (like the one here):

rails51/demo1/app/controllers/say_controller.rb
class SayController < ApplicationController

def hello➤

end➤

def goodbye
end

end

The bar contains the path to the code within the download. If you’re
reading the ebook version of this book and your ebook viewer supports
hyperlinks, you can click the bar, and the code should appear in a
browser window. Some browsers may mistakenly try to interpret some of

5. http://pragprog.com/titles/rails5/source_code

Introduction • viii

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/rails51/code/rails51/demo1/app/controllers/say_controller.rb
http://pragprog.com/titles/rails5/source_code
http://pragprog.com/titles/rails51
http://forums.pragprog.com/forums/rails51

the HTML templates as HTML. If this happens, view the source of the
page to see the real source code.

And in some cases involving the modification of an existing file where the
lines to be changed may not be immediately obvious, you’ll also see some
helpful little triangles on the left of the lines that you’ll need to change.
Two such lines are indicated in the previous code.

David says
Every now and then you’ll come across a “David says” sidebar. Here’s
where David Heinemeier Hansson gives you the real scoop on some par-
ticular aspect of Rails—rationales, tricks, recommendations, and more.
Because he’s the fellow who invented Rails, these are the sections to read
if you want to become a Rails pro.

Joe asks
Joe, the mythical developer, sometimes pops up to ask questions about
stuff we talk about in the text. We answer these questions as we go along.

This book isn’t meant to be a reference manual for Rails. Our experience is
that reference manuals aren’t the way most people learn. Instead, we show
most of the modules and many of their methods, either by example or narra-
tively in the text, in the context of how these components are used and how
they fit together.

Nor do we have hundreds of pages of API listings. There’s a good reason for
this: you get that documentation whenever you install Rails, and it’s guaran-
teed to be more up to date than the material in this book. If you install Rails
using RubyGems (which we recommend), start the gem documentation server
(using the gem server command), and you can access all the Rails APIs by
pointing your browser at http://localhost:8808.

In addition, you’ll see that Rails helps you by producing responses that
clearly identify any error found, as well as traces that tell you not only the
point at which the error was found but also how you got there. You’ll see an
example on page ?. If you need additional information, peek ahead to Iteration
E2: Handling Errors, on page ? to see how to insert logging statements.

If you get really stuck, there are plenty of online resources to help. In addition
to the code listings mentioned, you can find more resources on the Pragmatic
Bookshelf site page for this book, including links to the book forum and
errata.6 You can find hints for the Playtime exercises at the end of chapters

6. https://pragprog.com/book/rails5

• Click HERE to purchase this book now. discuss

How to Read This Book • ix

http://localhost:8808
https://pragprog.com/book/rails5
http://pragprog.com/titles/rails51
http://forums.pragprog.com/forums/rails51

in the Rails Playtime wiki.7 The resources listed on these pages are shared
resources. Feel free to post not only questions and problems to the forum
and wiki but also any suggestions and answers you may have to questions
that others have posted.

Let’s get started! The first steps are to install Ruby and Rails and to verify
the installation with a simple demonstration.

7. http://www.pragprog.com/wikis/wiki/RailsPlayTime

Introduction • x

• Click HERE to purchase this book now. discuss

http://www.pragprog.com/wikis/wiki/RailsPlayTime
http://pragprog.com/titles/rails51
http://forums.pragprog.com/forums/rails51

