
Extracted from:

Agile Web Development with Rails 5.1

This PDF file contains pages extracted from Agile Web Development with Rails 5.1,
published by the Pragmatic Bookshelf. For more information or to purchase a

paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2017 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Agile Web Development with Rails 5.1

Sam Ruby
David Bryant Copeland

with Dave Thomas

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Development Editor: Susannah Davidson Pfalzer
Indexing: Potomac Indexing, LLC
Copy Editor: Molly McBeath
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2017 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-251-0
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—November 2017

https://pragprog.com
support@pragprog.com
rights@pragprog.com

CHAPTER 13

In this chapter, you'll see:
• Using Webpacker to manage app-like Javascript
• Setting up a development environment that

includes Webpack
• Using React to build a dynamic web form
• Using Capybara and ChromeDriver to test JavaScript-

powered features

Task H: Entering Additional
Payment Details

Our customer is enthusiastic about our progress, but after playing with the
new checkout feature for a few minutes, she has a question: how does a user
enter payment details? It’s a great question, since there isn’t a way to do that.
Making that possible is somewhat tricky, because each payment method
requires different details. If users want to pay with a credit card, they need
to enter a card number and expiration date. If they want to pay with a check,
we’ll need a routing number and an account number. And for purchase orders,
we need the purchase order number.

Although we could put all five fields on the screen at once, the customer
immediately balks at the poor user experience that would result. Can we show
the appropriate fields, depending on what payment type is chosen? Changing
elements of a user interface dynamically is certainly possible with some
JavaScript, but it’s quite a bit more complex than the JavaScript we’ve used
thus far. Rails calls JavaScript like this app-like JavaScript, and it includes
a tool named Webpacker that will help us manage it. Webpacker will handle
a lot of complex setup for us so that we can focus most of our efforts on giving
our customer—and our users—a great experience checking out. (Refer back
to Chapter 1, Installing Rails, on page ?, for installation instructions for the
tools used in this chapter.)

Iteration H1: Adding Fields Dynamically to a Form
We need a dynamic form that changes what fields are shown based on what
pay type the user has selected. While we could cobble something together
with jQuery, it would be a bit cleaner if we could use a more modern

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/rails51
http://forums.pragprog.com/forums/rails51

JavaScript library like React.1 This will also form a solid base from which
we can easily add additional features later.

Using JavaScript libraries or frameworks can often be difficult, as the config-
uration burden they bear is far greater than what we’ve seen with Rails. To
help us manage this complexity, Rails includes Webpacker, which provides
configuration for Webpack.2 Webpack is a tool to manage the JavaScript files
that we write. Note the similar names. Webpacker is a gem that’s part of Rails
and sets up Webpack inside our Rails app.

Managing JavaScript is surprisingly complex. By using Webpack we can
easily put our JavaScript into several different files, bring in third-party
libraries (like React), and use more advanced features of JavaScript not sup-
ported by a browser (such as the ability to define classes). Webpack then
compiles all of our JavaScript, along with the third-party libraries we are
using, into a pack. Because this isn’t merely sprinkling small bits of JavaScript
in our view, Rails refers to this as app-like JavaScript.

While we could use Webpack directly with Rails, configuring Webpack is
extremely difficult. It’s highly customizable and not very opinionated, meaning
developers must make many decisions just to get something working. Web-
packer essentially is the decisions made by the Rails team and bundled up
into a gem. Almost everything Webpacker does is to provide a working config-
uration for Webpack and React so that we can focus on writing JavaScript
instead of configuring tools. But Webpack is the tool that manages our
JavaScript day-to-day.

React is a JavaScript view library designed to quickly create dynamic user
interfaces. We’ll use it to create a dynamic payment method details form, and
Webpacker will ensure that the configuration and setup for all this is as
simple as possible. That said, there’s a bit of setup we need to do.

First, we’ll configure Webpacker and install React. After that, we’ll replace
our existing payment-type drop-down with a React-rendered version, which
will demonstrate how all the moving parts fit together. With that in place,
we’ll enhance our React-powered payment type selector to show the dynamic
form elements we want.

1. https://facebook.github.io/react/
2. https://webpack.js.org

• 6

• Click HERE to purchase this book now. discuss

https://facebook.github.io/react/
https://webpack.js.org
http://pragprog.com/titles/rails51
http://forums.pragprog.com/forums/rails51

Configuring Webpacker and Installing React
Webpacker is a separate gem that you must install in addition to Rails. Add
it to your Gemfile like so:

gem 'webpacker', '~> 3.0'

Install this with bundle install.

Next, set up Webpack by running bin/rails webpacker:install.

$ bin/rails webpacker:install
Creating javascript app source directory

create app/javascript
create app/javascript/packs/application.js

Copying binstubs
exist bin

create bin/webpack-dev-server
create bin/webpack

identical bin/yarn
Copying webpack core config and loaders

create config/webpack
create config/webpack/configuration.js
create config/webpack/development.js
create config/webpack/development.server.js
create config/webpack/development.server.yml
create config/webpack/paths.yml
create config/webpack/production.js
create config/webpack/shared.js
create config/webpack/test.js
create config/webpack/loaders
create config/webpack/loaders/assets.js
create config/webpack/loaders/babel.js
create config/webpack/loaders/coffee.js
create config/webpack/loaders/erb.js
create config/webpack/loaders/sass.js
create .postcssrc.yml
append .gitignore

Installing all JavaScript dependencies
run ./bin/yarn add webpack webpack-merge js-yaml…

yarn add v0.20.3
[1/4] Resolving packages...
[2/4] Fetching packages...
[3/4] Linking dependencies...
[4/4] Building fresh packages...

«lots of output»
Done in 24.95s.
Installing dev server for live reloading

run ./bin/yarn add --dev webpack-dev-server from "."
yarn add v0.20.3

• Click HERE to purchase this book now. discuss

Iteration H1: Adding Fields Dynamically to a Form • 7

http://pragprog.com/titles/rails51
http://forums.pragprog.com/forums/rails51

[1/4] Resolving packages...
[2/4] Fetching packages...
[3/4] Linking dependencies...
[4/4] Building fresh packages...
success Saved lockfile.
success Saved 82 new dependencies.

«lots more output»
Done in 5.11s.
Webpacker successfully installed

As you can see from the output, this created several configuration files in
config/webpack and installed various JavaScript libraries. The libraries that were
installed are listed in package.json. package.json is the JavaScript equivalent to
our Gemfile—–it lists all the necessary JavaScript libraries for our app to run.
The equivalent of Bundler is Yarn.

Just like bundle install downloads all the gems our app needs, yarn install downloads
all the JavaScript libraries we need. As a convenience, the webpacker:install task
ran yarn install for us.

Webpacker can also install and configure some common JavaScript frame-
works such as Angular, Vue, or React. We chose React because it’s the sim-
plest overall and is the best fit for solving our problem. To have Webpacker
set it all up for us, run the task webpacker:install:react:

$ bin/rails webpacker:install:react
Copying react loader to …config/webpack/loaders

create config/webpack/loaders/react.js
Copying .babelrc to app root directory

create .babelrc
Copying react example entry file to …app/javascript/packs

create app/javascript/packs/hello_react.jsx
Installing all react dependencies

run ./bin/yarn add react react-dom babel-preset-react from "."
yarn add v0.20.3
[1/4] Resolving packages...
[2/4] Fetching packages...
[3/4] Linking dependencies...
warning "react-dom@15.4.2" has unmet peer dependency "react@^15.4.2".
[4/4] Building fresh packages...
success Saved lockfile.
success Saved 26 new dependencies.

«lots of output»
Done in 7.17s.
Webpacker now supports react.js

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/rails51
http://forums.pragprog.com/forums/rails51

If you’ve ever tried to set up Webpack and a JavaScript framework like React
before, you’ll appreciate how much work Webpacker has just done for us. If
you’ve never had the privilege, trust me, this saves a ton of time and aggravation.

Webpacker also created a rudimentary React component in app/javascript/packs/hel-
lo_react.jsx. Don’t worry about what that means for now. We’re going to use this
generated code to validate the installation and set up our development envi-
ronment. This generated code will append the string “Hello React!” to the end
of our page, but it’s not activated by default. Let’s find out why, configure it
to be included in our views, and set up our development environment to work
smoothly with Webpacker.

Updating Our Development Environment for Webpack
Webpacker includes a helper method called javascript_pack_tag() that takes as
an argument the name of the file in app/javascript/packs whose JavaScript should
be included on the page.

The reason Rails doesn’t simply include all JavaScript all the time is that you
might not want that to happen for performance reasons. Although our payment
details code won’t be terribly complex, it’ll still be a chunk of code our users
will have to download. Since it won’t be needed anywhere else in our app, we
can make the user experience faster and better by only downloading the code
when it’s needed.

Webpacker allows us to have any number of these separately managed packs.
We can include any that we like, wherever we like. To see how this works,
let’s add a call to javascript_pack_tag() to our app/views/orders/new.html.erb page to
bring in the sample React component that Webpacker created for us.

rails51/depot_pa/app/views/orders/new.html.erb
<section class="depot_form">

<h1>Please Enter Your Details</h1>
<%= render 'form', order: @order %>

</section>

<%= javascript_pack_tag("hello_react") %>➤

If you add some items to your cart and navigate to the checkout page, you
should see the string “Hello React!” at the bottom of the page, as shown in
the screenshot on page 10.

This validates that all the internals of Webpack are working with the app
(which is always a good practice before writing code so we can be sure what
might be the cause if something’s wrong). Now we can start building our fea-
ture. We need to replace the existing drop-down with one powered by React

• Click HERE to purchase this book now. discuss

Iteration H1: Adding Fields Dynamically to a Form • 9

http://media.pragprog.com/titles/rails51/code/rails51/depot_pa/app/views/orders/new.html.erb
http://pragprog.com/titles/rails51
http://forums.pragprog.com/forums/rails51

and our Webpacker-managed JavaScript. Doing that requires a slight diversion
to learn about React.

• 10

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/rails51
http://forums.pragprog.com/forums/rails51

