
Extracted from:

Continuous Testing
with Ruby, Rails, and JavaScript

This PDF file contains pages extracted from Continuous Testing, published by the Pragmatic
Bookshelf. For more information or to purchase a paperback or PDF copy, please visit

http://www.pragprog.com .

Note: This extract contains some colored text (particularly in code listing). This is available
only in online versions of the books. The printed versions are black and white. Pagination

might vary between the online and printer versions; the content is otherwise identical.

Copyright © 2010 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form, or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the

prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

Continuous Testing
with Ruby, Rails, and JavaScript

Ben Rady
Rod Coffin

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks.Where those designations appear in this book, and The Pragmatic Programmers, LLC
was aware of a trademark claim, the designations have been printed in initial capital letters or in all
capitals. The Pragmatic Starter Kit, The Pragmatic Programmer, Pragmatic Programming, Pragmatic
Bookshelf, PragProg and the linking g device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes no
responsibility for errors or omissions, or for damages that may result from the use of information
(including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create better
software and have more fun. For more information, as well as the latest Pragmatic titles, please visit
us at http://pragprog.com.

The team that produced this book includes:

Jacquelyn Carter (editor)
Potomac Indexing, LLC (indexer)
Kim Wimpsett (copyeditor)
David J Kelly (typesetter)
Janet Furlow (producer)
Juliet Benda (rights)
Ellie Callahan (support)

Copyright © 2011 Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-934356-70-8
Printed on acid-free paper.
Book version: P1.0—June 2011

http://pragprog.com

As professional programmers, few things instill more despair in us
than discovering a horrible production bug in something that worked
perfectly fine last week.The only thing worse is when our customers
discover it and inform us…angrily. Automated testing, and particularly
test driven development, were the first steps that we took to try to
eliminate this problem. Over the last ten years, these practices have
served us well and helped us in our fight against defects. They’ve
also opened the doors to a number of other techniques, some of
which may be even more valuable. Practices such as evolutionary
design and refactoring have helped us deliver more valuable software
faster and with higher quality.

Despite the improvements, automated testing was not (and is not)
a silver bullet. In many ways, it didn’t eliminate the problems we
were trying to exterminate but simply moved them somewhere else.
We found most of our errors occurring while running regression or
acceptance tests in QA environments or during lengthy continuous
integration builds. While these failures were better than finding
production bugs, they were still frustrating because they meant we
had wasted our time creating something that demonstrably did not
work correctly.

We quickly realized that the problem in both cases was the timeliness
of the feedback we were getting. Bugs that happen in production
can occur weeks (or months or years!) after the bug is introduced,
when the reason for the change is just a faint memory. The
programmer who caused it may no longer even be on the project.
Failing tests that ran on a build server or in a QA environment told
us about our mistakes long after we’d lost the problem context and
the ability to quickly fix them. Even the time between writing a test
and running it as part of a local build was enough for us to lose
context and make fixing bugs harder. Only by shrinking the gap
between the creation of a bug and its resolution could we preserve
this context and turn fixing a bug into something that is quick and
easy.

While looking for ways to shrink those feedback gaps, we discovered
continuous testing and started applying it in our work. The results
were compelling. Continuous testing has helped us to eliminate
defects sooner and given us the confidence to deliver software at a

• CLICK HERE to purchase this book now. discuss

http://pragprog.com/titles/rcctr
http://forums.pragprog.com/forums/rcctr

faster rate. We wrote this book to share these results with everyone
else who has felt that pain. If you’ve ever felt fear in your heart while
releasing new software into production, disappointment while reading
the email that informs you of yet another failing acceptance test, or
the joy that comes from writing software and having it work perfectly
the first time, this book is for you.

Using continuous testing, we can immediately detect problems in
code—before it’s too late and before problems spread. It isn’t magic
but a clever combination of tests, tools, and techniques that tells us
right away when there’s a problem, not minutes, hours, or days from
now but right now, when it’s easiest to fix. This means we spend
more of our time writing valuable software and less time slogging
through code line by line and second-guessing our decisions.

Exploring the Chapters

This book is divided into two parts. The first part covers working in
a pure Ruby environment, while the second discusses the application
of continuous testing in a Rails environment. A good portion of the
second part is devoted to continuous testing with JavaScript, a topic
we believe deserves particular attention.

In Chapter 1, Why Test Continuously?, on page ?, we give you a
bit of context. This chapter is particularly beneficial for those who
don’t have much experience writing automated tests. It also
establishes some terminology we’ll use throughout the book.

The next three chapters,
Chapter 2, Creating Your Environment, on page ?, Chapter 3,
Extending Your Environment, on page ?, and Chapter 4, Interacting
with Your Code, on page ?, show how to create, enhance, and use
a continuous testing environment for a typical Ruby project. We’ll
discuss the qualities of an effective suite of tests and show how
continuous testing helps increase the quality of our tests. We’ll take
a close look at a continuous test runner, Autotest, and see how it
can be extended to provide additional behavior that is specific to
our project and its needs. Finally, we’ll discuss some of the more
advanced techniques that continuous testing allows, including inline
assertions and comparison of parallel execution paths.

• CLICK HERE to purchase this book now. discuss

• v

http://pragprog.com/titles/rcctr
http://forums.pragprog.com/forums/rcctr

In the second part of the book, we create a CT environment for a
Rails app. In addition to addressing some of the unique problems
that Rails brings into the picture, we also take a look at another
continuous test runner, Watchr. As we’ll see, Watchr isn’t so much
a CT runner but a tool for easily creating feedback loops in our
project.We’ll use Watchr to create a CT environment for JavaScript,
which will allow us to write tests for our Rails views that run very
quickly and without a browser.

At the very end, we’ve also included a little “bonus” chapter: an
appendix on using JavaScript like a functional programming
language. If your use of JavaScript has been limited to simple HTML
manipulations and you’ve never had the opportunity to use it for
more substantial programming, you might find this chapter very
enlightening.

For the most part, we suggest that you read this book sequentially.
If you’re very familiar with automated testing and TDD, you can
probably skim through the first chapter, but most of the ideas in this
book build on each other. In particular, even if you’re familiar with
Autotest, pay attention to the sections in Chapter 2, Creating Your
Environment, on page ? that discuss FIRE and the qualities of
good test suites. These ideas will be essential as you read the later
chapters.

Each chapter ends with a section entitled “Closing the Loop.” In this
section we offer a brief summary of the chapter and suggest some
additional tasks or exercises you could undertake to increase your
understanding of the topics presented in the chapter.

Terminology

We use the terms test and spec interchangeably throughout the
book. In both cases, we’re referring to a file that contains individual
examples and assertions, regardless of the framework we happen
to be working in.

We frequently use the term production code to refer to the code that
is being tested by our specs. This is the code that will be running in
production after we deploy. Some people call this the “code under
test.”

• CLICK HERE to purchase this book now. discuss

• vi

http://pragprog.com/titles/rcctr
http://forums.pragprog.com/forums/rcctr

Who This Book Is For

Hopefully, testing your code continuously sounds like an attractive
idea at this point. But you might be wondering if this book is really
applicable to you and the kind of projects you work on. The good
news is that the ideas we’ll present are applicable across a wide
range of languages, platforms, and projects. However, we do have
a few expectations of you, dear reader.We’re assuming the following
things:

• You are comfortable reading and writing code.

• You have at least a cursory understanding of the benefits of
automated testing.

• You can build tools for your own use.

Knowledge of Ruby, while very beneficial, isn’t strictly required. If
you’re at all familiar with any object-oriented language, the Ruby
examples will likely be readable enough that you will understand
most of them. So if all of that sounds like you, we think you’ll get
quite a bit out of reading this book. We’re hoping to challenge you,
make you think, and question your habits.

Working the Examples

It’s not strictly necessary to work through the examples in this book.
Much of what we do with the examples is meant to spark ideas about
what you should be doing in your own work rather than to provide
written examples for you to copy. Nonetheless, working through
some of the examples may increase your understanding, and if
something we’ve done in the book would apply to a project that
you’re working on, certainly copying it verbatim may be the way to
go.

To run the examples in this book, we suggest you use the following:

• A *nix operating system (Linux or MacOS, for example)

• Ruby 1.9.2

• Rails 3.0.4

In addition, you can find a list of the gems we used while running
the examples in Appendix 2, Gem Listing, on page ?.

• CLICK HERE to purchase this book now. discuss

• vii

http://pragprog.com/titles/rcctr
http://forums.pragprog.com/forums/rcctr

The examples may work in other environments (such as Windows)
and with other versions of these tools, but this is the configuration
that we used while writing the book.

Online Resources

The source for the examples is available at http://pragprog.
com/titles/rcctr/source_code.

If you’re having trouble installing Ruby, we suggest you try using
the Ruby Version Manager (or RVM), available at: http://rvm.
beginrescueend.com/.

If something isn’t working or you have a question about the book,
please let us know in the forums at http://forums.pragprog.
com/forums/170.

Ben blogs at http://benrady.com, and you can find his Twitter stream
at https://twitter.com/benrady.

Ben Rady
June 2011

Rod Coffin
June 2011

• CLICK HERE to purchase this book now. discuss

• viii

http://pragprog.com/titles/rcctr/source_code
http://pragprog.com/titles/rcctr/source_code
http://rvm.beginrescueend.com/
http://rvm.beginrescueend.com/
http://forums.pragprog.com/forums/170
http://forums.pragprog.com/forums/170
http://benrady.com
https://twitter.com/benrady
http://pragprog.com/titles/rcctr
http://forums.pragprog.com/forums/rcctr

