
Extracted from:

Docker for Rails Developers
Build, Ship, and Run Your Applications Everywhere

This PDF file contains pages extracted from Docker for Rails Developers, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2019 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Docker for Rails Developers
Build, Ship, and Run Your Applications Everywhere

Rob Isenberg

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Managing Editor: Susan Conant
Development Editor: Adaobi Obi Tulton
Copy Editor: Nicole Abramowitz
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2019 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-273-2
Book version: P1.0—February 2019

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Ruth. In hindsight, writing a book whilst hav-
ing a baby and renovating a house probably
wasn’t the best idea—who knew? Thank you
for your patience, love, and support. None of
this would have been possible without you.

Sammy. I couldn’t have imagined the joy and
love you’d bring into our life. Be kind, be

brave, and be willing to take risks in pursuit
of your happiness and passions. I love you so

much.

Mum and Dad. Thank you for everything.

Starting and Stopping Services
A common thing we’ll need to do while developing our application is to stop
or start the various services that make it up. In a moment, we’ll dive into the
fine-grained control Compose gives us to do this. Before we do, though, it’s
helpful to have in mind the journey that containers go through, from creation
until they are no longer needed.

The following figure shows a simplified version of a container’s life cycle:

A container comes into existence in the created state. It doesn’t execute any
code; it merely sits around waiting until it’s called for. When the container is
started, it moves into the running state, where it actively executes code. The
docker run command we’ve seen creates a new container, then starts it running.

In the running state, a container can be restarted, stopped, killed, or paused.
Pausing a container suspends the running processes so that they can be
resumed some time later. Stopping a container attempts to shut down
gracefully by sending a terminate signal (SIGTERM) to the main process inside
the container—falling back to a forceful shutdown with a kill signal (SIGKILL)
if this fails. Killing a container jumps straight to the forceful termination.

A container moves into the stopped state if it is stopped, or killed, or if the
main process running inside it terminates. The stopped state is similar to the
created state: the container sits there doing nothing until it is called upon.
From there, the container can either be restarted or, if you have no more use

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/ridocker
http://forums.pragprog.com/forums/ridocker

for it, removed from the system. With that in mind, let’s see how this works
in practice using Compose.

First of all, let’s check what containers are currently running. To do this, we
use the ps command:

$ docker-compose ps
Name Command State Ports

myapp_web_1 bin/rails s -b 0.0.0.0 Up 0.0.0.0:3000->3000/tcp

The listing includes the container name, the command used to start it, its
current state, and its port mappings. Here you can see the container for our
Rails server; it’s still running from when we previously ran docker-compose up -d
(Up means it’s running).

If we now wanted to stop the Rails server, we’d do so with the stop command.
By default, the command would apply to all services listed in our docker-com-
pose.yml file. For example, to stop all containers in the entire application, we
would run:

$ docker-compose stop

To target a particular service, we’d specify the service name after the action
like so:

$ docker-compose stop <service_name>

This may seem like a moot point since, currently, web is the only service we
have defined. However, we’ll soon be adding more services, starting in Chapter
5, Beyond the App: Adding Redis, on page ?. It’s common to want to target
commands at a specific service, so it’s very useful to remember this pattern—
particularly as all the docker-compose commands follow it.

Let’s go ahead and stop the web service:

$ docker-compose stop web
Stopping myapp_web_1 ... done

Loading localhost:3000 in the browser will now fail, and listing the containers
will report that the Rails server has terminated:

$ docker-compose ps
Name Command State Ports

myapp_web_1 bin/rails s -b 0.0.0.0 Exit 1

Having stopped a container, we can start it again with the start command:

$ docker-compose start web

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/ridocker
http://forums.pragprog.com/forums/ridocker

Starting web ... done

There’s also a restart command that’s handy if, for example, you’ve made some
config changes and want the Rails server to pick them up.

$ docker-compose restart web
Restarting myapp_web_1 ... done

The various Compose commands we’ve seen all rely on underlying docker
commands.3 However, we won’t cover those in detail since we’ll be using
Compose from now on. Compose gives us all the power of the lower-level
docker commands, but with simpler, app-centric commands.

3. https://docs.docker.com/engine/reference/commandline/start/

• Click HERE to purchase this book now. discuss

Starting and Stopping Services • 9

https://docs.docker.com/engine/reference/commandline/start/
http://pragprog.com/titles/ridocker
http://forums.pragprog.com/forums/ridocker

