
Extracted from:

Docker for Rails Developers
Build, Ship, and Run Your Applications Everywhere

This PDF file contains pages extracted from Docker for Rails Developers, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2019 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Docker for Rails Developers
Build, Ship, and Run Your Applications Everywhere

Rob Isenberg

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Managing Editor: Susan Conant
Development Editor: Adaobi Obi Tulton
Copy Editor: Nicole Abramowitz
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2019 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-273-2
Book version: P1.0—February 2019

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Ruth. In hindsight, writing a book whilst hav-
ing a baby and renovating a house probably
wasn’t the best idea—who knew? Thank you
for your patience, love, and support. None of
this would have been possible without you.

Sammy. I couldn’t have imagined the joy and
love you’d bring into our life. Be kind, be

brave, and be willing to take risks in pursuit
of your happiness and passions. I love you so

much.

Mum and Dad. Thank you for everything.

How Containers Can Talk to Each Other
If two containers are isolated, independent processes, how come, as we just
saw, that they are able to talk to one another? While it’s true that the code
and processes running in a container are sandboxed, that does not mean the
container has no way to communicate with the outside world. If containers
could not communicate, we would not be able to connect them together to
create a powerful, connected system of services that together make up our
application.

If you remember back to Launching Our App, on page ?, we said that docker-
compose up creates a new network for the app. By default, all containers for
our app are connected to the app’s network and can communicate with each
other. This means that our containers, just like a physical or virtual server,
can communicate outside themselves using TCP/IP networking.

Let’s list our currently defined networks using the command:

$ docker network ls

You should see some output similar to the following:

NETWORK ID NAME DRIVER SCOPE
128925dfad81 bridge bridge local
5bd7167263e8 host host local
e2af02026928 myapp_default bridge local
d1145155d62a none null local

The first network called bridge is a legacy network to provide backwards com-
patibility with some older Docker features—we won’t be using it now that
we’ve switched to Compose. Similarly, the host and none networks are special
networks that Docker sets up that we don’t need to care about.

The network we do care about is called myapp_default—this is our app’s dedicated
network that Compose created for us (Compose uses the <appname>_default
naming convention). The reason Compose creates this network for us is simple:
it knows that the services we’re defining are all related to the same application,
so inevitably they are going to need to talk to one another.

But how do containers on this network find each other?

All Docker networks (except for the legacy bridge network) have built-in Domain
Name System (DNS) name resolution. That means that we can communicate
with other containers running on the same network by name. Compose uses
the service name (as defined in our docker-compose.yml) as the DNS entry. So if
we wanted to reach our web service, that’s accessible via the hostname web.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/ridocker
http://forums.pragprog.com/forums/ridocker

This provides a basic form of service discovery—a consistent way of finding
container-based services, even across container restarts.

This explains how we were able to connect from the ad-hoc container running
the redis-cli to our Redis server running as the redis service. Here’s the command
we used:

$ docker-compose run --rm redis redis-cli -h redis

The option -h redis says, “Connect to the host named redis.” This only worked
because Compose had already created our app’s network and set up DNS
entries for each service. In particular, our redis service can be referred to by
the hostname redis.

Our Rails App Talking to Redis
Although it’s great that we’ve started up a Redis server using Compose, it’s
not much use to us by itself. The whole point of running the Redis server is
so our Rails app can talk to it and use it as a key-value store. So let’s connect
our Rails app to Redis and actually use it for something. Sound like fun?

Now, there are a million ways an app might want to use Redis. For our pur-
poses, though, we don’t really care what we use Redis for; we care more about
how to use it. We’re going to use an intentionally basic example: our Rails
app will simply store and retrieve a value. However, keep the larger point in
mind—once you know how to set up the Rails app to talk to the Redis server
in a container, you can use it however you like.

Ready? Let’s begin.

Installing the Redis Gem
The first thing we need to do to get our Rails app talking to Redis is to install
the redis gem. You may remember that to update our gems, we need to update
our image as we saw on page ?.

So first, in our Gemfile, uncomment the Redis gem in the Gemfile like so:

gem 'redis', '~> 4.0'

Next, stop our Rails server:

$ docker-compose stop web

and rebuild our custom Rails image:

$ docker-compose build web

Among other things, this runs bundle install, which installs the Redis gem:

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/ridocker
http://forums.pragprog.com/forums/ridocker

Building web
Step 1/8 : FROM ruby:2.6
«...»
Step 6/8 : RUN bundle install
«...»
Installing redis 4.1.0
«...»
Bundle complete! 16 Gemfile dependencies, 69 gems now installed.
Bundled gems are installed into `/usr/local/bundle`
«...»
Removing intermediate container 3831c10d2cb5
---> 1ca01125bd35

Step 7/8 : COPY . /usr/src/app/
---> 852dc1f2b419

Step 8/8 : CMD ["bin/rails", "s", "-b", "0.0.0.0"]
---> Running in 280c7e2eb556

Removing intermediate container 280c7e2eb556
---> d9b3e5325308

Successfully built d9b3e5325308
Successfully tagged myapp_web:latest

It’s good to get into the habit of rebuilding our image to perform bundle install
for us, having updated our Gemfile. That said, we’ll learn about a more advanced
approach to gem management on page ? that, as well as being much faster,
allows us to stick with our familiar bundle install workflow.

Let’s start up our newly built Rails server again:

$ docker-compose up -d web

Updating Our Rails App to Use Redis
Next, we’re going to actually use Redis from our Rails app. As we said before,
we just want a basic demonstration that we can connect to the Redis server
and store and retrieve values. So let’s start by generating a welcome controller
in our Rails app with a single index action:

Linux Users: File Ownership

Make sure you have chowned the files by running:

$ sudo chown <your_user>:<your_group> -R .

See File Ownership and Permissions, on page ?, for more details.

$ docker-compose exec web bin/rails g controller welcome index
create app/controllers/welcome_controller.rb
route get 'welcome/index'

invoke erb
create app/views/welcome
create app/views/welcome/index.html.erb

• Click HERE to purchase this book now. discuss

Our Rails App Talking to Redis • 9

http://pragprog.com/titles/ridocker
http://forums.pragprog.com/forums/ridocker

invoke helper
create app/helpers/welcome_helper.rb
invoke assets
invoke coffee
create app/assets/javascripts/welcome.coffee
invoke scss
create app/assets/stylesheets/welcome.scss

Let’s modify our welcome#index action (in app/controllers/welcome_controller.rb) to be
as follows:

class WelcomeController < ApplicationControllerLine 1

def index2

redis = Redis.new(host: "redis", port: 6379)3

redis.incr "page hits"4

5

@page_hits = redis.get "page hits"6

end7

end8

In our index action, on line 3, we use the Redis client gem to connect to the
Redis server by name and by the port number we expect it to be running on.
Then, on line 4, we increment a Redis key-value pair, called “page hits.” If
you’re wondering what happens the very first time this code is run, don’t fret:
if the key is not found, Redis will initialize it to zero, so our code will work as
expected. Finally, on line 6, we fetch the current number of page hits from
Redis, storing it in an instance variable, ready to display it in our view.

Now let’s edit our view file (app/views/welcome/index.html.erb) to display the number
of page hits:

<h1>This page has been viewed <%= pluralize(@page_hits, 'time') %>!</h1>

Finally, in config/routes.rb, let’s change the autogenerated route so we can access
our new WelcomeController’s index action from /welcome (rather than /welcome/index):

• 10

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/ridocker
http://forums.pragprog.com/forums/ridocker

Rails.application.routes.draw do
get 'welcome', to: 'welcome#index'

end

Now let’s visit our Rails app in the browser at http://localhost:3000/welcome. You
should see a page with our rendered welcome index.html.erb file, as shown in
the following figure:

The page loads without errors—a good sign. Now try reloading the page. Every
time you do, you should see the number of page hits increasing.

What does this mean? It means that our Rails app connected to the Redis
server, incremented the value of “page hits” from default of 0 to 1, and finally
displayed our welcome message with the number of page hits. More generally,
we successfully got two containers to talk to each other. This is possible
thanks to Compose creating the network for the app and automatically
attaching containers to it.

• Click HERE to purchase this book now. discuss

Our Rails App Talking to Redis • 11

http://localhost:3000/welcome
http://pragprog.com/titles/ridocker
http://forums.pragprog.com/forums/ridocker

