
Extracted from:

Rails Recipes
Rails 3 Edition

This PDF file contains pages extracted from Rails Recipes, published by the
Pragmatic Bookshelf. For more information or to purchase a paperback or PDF

copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printer versions; the

content is otherwise identical.

Copyright © 2010 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

The team that produced this book includes:

John Osborn (editor)
Potomac Indexing, LLC (indexer)
Kim Wimpsett (copyeditor)
David J Kelly (typesetter)
Janet Furlow (producer)
Juliet Benda (rights)
Ellie Callahan (support)

Copyright © 2012 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-93435-677-7
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—March 2012

http://pragprog.com

Problem

Before the introduction of HTML5, if you were creating a rich, JavaScript-
driven HTML user interface and wanted to store data in the browser for use
by elements on the page, you were on your own. You could certainly store
data in a JavaScript structure and access it by element id. Or you could create
a custom XHTML namespace. But any solution required some manual work,
and anyone who followed you on the project had to learn your way of doing
things.

HTML5 introduces a standard solution to this problem with its new data-*
attributes. How can we best use these from Rails applications?

Solution

You can create tags that store local data with the new Rails 3.1+ :data option.
This gives us a convenient mechanism for generating HTML5 tags with data-*
attributes, a feature available with HTML 5. In this recipe, we’ll generate a
page with data-* and then show how to read those options using CoffeeScript.

The first step is to generate an HTML template containing data attributes. As
an example, we’ll create a simple contact management app. We want to gen-
erate a sparse list of contact names but show more detailed information about
the contact when a user hovers over the name with a mouse. We’ll start with
the default scaffolded index() action and a basic Contact model containing fields
for name, city, state, and country.

Here’s code to list the Contact records like this:

rr2/html5-data/app/views/contacts/index.html.erb
<h1>Listing contacts</h1>

<% @contacts.each do |contact| %>
<%= content_tag_for(:li,

contact,
:data => {
:city => contact.city,
:name => contact.name,
:country => contact.country}) do %>

<%= contact.name %> from <%= contact.city %>
<% end %>

<% end %>

<%= link_to 'New Contact', new_contact_path %>
<div id='tip' style='display:none'>

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/rr2/code/rr2/html5-data/app/views/contacts/index.html.erb
http://pragprog.com/titles/rr2
http://forums.pragprog.com/forums/rr2

</div>

There isn’t much new here. Except for one feature, it’s all the same view code
Rails developers have been writing for years. The exception is that when we
generate the elements, we use content_tag_for()’s :data option to specify a Hash
of data elements we want embedded in the generated element. So, though
our element shows only the contact’s name, the element itself has more
information embedded. An example contact list’s source might look like this:

<li class="contact" data-city="New Orleans"
data-country="USA" data-name="Chad Fowler" id="contact_1">

Chad Fowler from New Orleans

<li class="contact" data-city="Oak Park" data-country="USA"

data-name="Donald Shimoda" id="contact_2">
Donald Shimoda from Oak Park

<li class="contact" data-city="Tokyo" data-country="Japan"

data-name="Toru Okada" id="contact_3">
Toru Okada from Tokyo

Now that we’ve successfully embedded data into the list elements, we’ll write
some CoffeeScript to display it. We have prepared an empty, hidden <div> at
the bottom of our index() view with the id set to <tip>. Our CoffeeScript code
will fill this element with additional contact information when a user hovers
over the corresponding list element. Here’s our CoffeeScript file, which we’ve
put in app/assets/javascripts/contacts.js.coffee:

rr2/html5-data/app/assets/javascripts/contacts.js.coffee
$ ->

$('.contact').bind 'mouseenter', (event) =>
contact = event.target
$('#tip').html text_summary_for(contact)
$('#tip').show()
$('.contact').bind 'mouseleave', (event) =>

$('#tip').hide()

Here we’re using jQuery’s ability to run code when the document is ready.
The code binds the <mouseenter> event to set the tip element’s HTML to a
text summary of the contact record and show it. Then on a <mouseleave>,
we re-hide the tip. The text_summary_for() function simply concatenates a string
of text to be rendered into the tip element:

rr2/html5-data/app/assets/javascripts/contacts.js.coffee
text_summary_for = (contact) =>

contact.dataset['name'] +
" lives in " +

• Click HERE to purchase this book now. discuss

• 5

http://media.pragprog.com/titles/rr2/code/rr2/html5-data/app/assets/javascripts/contacts.js.coffee
http://media.pragprog.com/titles/rr2/code/rr2/html5-data/app/assets/javascripts/contacts.js.coffee
http://pragprog.com/titles/rr2
http://forums.pragprog.com/forums/rr2

Automatic CoffeeScript Compilation

As of Rails 3.1, Rails will automatically compile CoffeeScript files into JavaScript in
development mode. Simply edit CoffeeScript files in your app/assets/javascripts directory,
and Rails will compile them into JavaScript and serve them as requests are made.

contact.dataset['city'] +
" in " +
contact.dataset['country']

That’s all there is to it! As you can see, HTML5 data attributes make in-element
data storage simple, and the addition of the :data option in Rails 3.1 makes it
even cleaner.

Also See

• For more information on new features of HTML5, see Brian Hogan’s HTML5
and CSS3: Develop with Tomorrow’s Standards Today [Hog10].

• To learn more about CoffeeScript, check out the CoffeeScript website at
http://jashkenas.github.com/coffee-script/. Another alternative, Trevor Burnham’s
CoffeeScript: Accelerated JavaScript Development [Bur11], is an excellent
guide to the language.

6 •

• Click HERE to purchase this book now. discuss

http://jashkenas.github.com/coffee-script/
http://pragprog.com/titles/rr2
http://forums.pragprog.com/forums/rr2

