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Problem

Before the introduction of HTML5, if you were creating a rich, JavaScript-
driven HTML user interface and wanted to store data in the browser for use
by elements on the page, you were on your own. You could certainly store
data in a JavaScript structure and access it by element id. Or you could create
a custom XHTML namespace. But any solution required some manual work,
and anyone who followed you on the project had to learn your way of doing
things.

HTML5 introduces a standard solution to this problem with its new data-*
attributes. How can we best use these from Rails applications?

Solution

You can create tags that store local data with the new Rails 3.1+ :data option.
This gives us a convenient mechanism for generating HTML5 tags with data-*
attributes, a feature available with HTML 5. In this recipe, we’ll generate a
page with data-* and then show how to read those options using CoffeeScript.

The first step is to generate an HTML template containing data attributes. As
an example, we’ll create a simple contact management app. We want to gen-
erate a sparse list of contact names but show more detailed information about
the contact when a user hovers over the name with a mouse. We’ll start with
the default scaffolded index() action and a basic Contact model containing fields
for name, city, state, and country.

Here’s code to list the Contact records like this:

rr2/html5-data/app/views/contacts/index.html.erb
<h1>Listing contacts</h1>
<ul>
<% @contacts.each do |contact| %>
<%= content_tag_for(:li,

contact,
:data => {
:city => contact.city,
:name => contact.name,
:country => contact.country}) do %>

<%= contact.name %> from <%= contact.city %>
<% end %>

<% end %>
</ul>

<br />

<%= link_to 'New Contact', new_contact_path %>
<div id='tip' style='display:none'>
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</div>

There isn’t much new here. Except for one feature, it’s all the same view code
Rails developers have been writing for years. The exception is that when we
generate the <li> elements, we use content_tag_for()’s :data option to specify a Hash
of data elements we want embedded in the generated element. So, though
our <li> element shows only the contact’s name, the element itself has more
information embedded. An example contact list’s source might look like this:

<li class="contact" data-city="New Orleans"
data-country="USA" data-name="Chad Fowler" id="contact_1">

Chad Fowler from New Orleans
</li>
<li class="contact" data-city="Oak Park" data-country="USA"

data-name="Donald Shimoda" id="contact_2">
Donald Shimoda from Oak Park

</li>
<li class="contact" data-city="Tokyo" data-country="Japan"

data-name="Toru Okada" id="contact_3">
Toru Okada from Tokyo

</li>

Now that we’ve successfully embedded data into the list elements, we’ll write
some CoffeeScript to display it. We have prepared an empty, hidden <div> at
the bottom of our index() view with the id set to <tip>. Our CoffeeScript code
will fill this element with additional contact information when a user hovers
over the corresponding list element. Here’s our CoffeeScript file, which we’ve
put in app/assets/javascripts/contacts.js.coffee:

rr2/html5-data/app/assets/javascripts/contacts.js.coffee
$ ->

$('.contact').bind 'mouseenter', (event) =>
contact = event.target
$('#tip').html text_summary_for(contact)
$('#tip').show()
$('.contact').bind 'mouseleave', (event) =>

$('#tip').hide()

Here we’re using jQuery’s ability to run code when the document is ready.
The code binds the <mouseenter> event to set the tip element’s HTML to a
text summary of the contact record and show it. Then on a <mouseleave>,
we re-hide the tip. The text_summary_for() function simply concatenates a string
of text to be rendered into the tip element:

rr2/html5-data/app/assets/javascripts/contacts.js.coffee
text_summary_for = (contact) =>

contact.dataset['name'] +
" lives in " +
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Automatic CoffeeScript Compilation

As of Rails 3.1, Rails will automatically compile CoffeeScript files into JavaScript in
development mode. Simply edit CoffeeScript files in your app/assets/javascripts directory,
and Rails will compile them into JavaScript and serve them as requests are made.

contact.dataset['city'] +
" in " +
contact.dataset['country']

That’s all there is to it! As you can see, HTML5 data attributes make in-element
data storage simple, and the addition of the :data option in Rails 3.1 makes it
even cleaner.

Also See

• For more information on new features of HTML5, see Brian Hogan’s HTML5
and CSS3: Develop with Tomorrow’s Standards Today [Hog10].

• To learn more about CoffeeScript, check out the CoffeeScript website at
http://jashkenas.github.com/coffee-script/. Another alternative, Trevor Burnham’s
CoffeeScript: Accelerated JavaScript Development [Bur11], is an excellent
guide to the language.
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