
Extracted from:

Rails Recipes
Rails 3 Edition

This PDF file contains pages extracted from Rails Recipes, published by the
Pragmatic Bookshelf. For more information or to purchase a paperback or PDF

copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printer versions; the

content is otherwise identical.

Copyright © 2010 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

The team that produced this book includes:

John Osborn (editor)
Potomac Indexing, LLC (indexer)
Kim Wimpsett (copyeditor)
David J Kelly (typesetter)
Janet Furlow (producer)
Juliet Benda (rights)
Ellie Callahan (support)

Copyright © 2012 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-93435-677-7
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—March 2012

http://pragprog.com

Problem

In a well-designed database, tables are partitioned according to their meanings
in the application domain and the most efficient methods of access. As
database programmers, we spend a lot of time and energy making sure our
databases are well-designed. Unfortunately, this design doesn’t always
translate well into our user interfaces. What’s good for a relational database
management system may not be good for a human trying to do data entry.
Go figure.

The mismatch between design and UI is a particular problem when we want
to create a form for entering or editing data that belongs to two or more
models. With the form_for() helper that ships with Rails, we can only create
forms that wrap one ActiveModel object. So, how can we create a form we can
use to interact with data from multiple, associated models?

Solution

The keys to creating multimodel forms in Rails are Active Record’s
accepts_nested_attributes_for() method and Action View’s fields_for() method.

Imagine we have a Recipe model with a has_many() association to ingredients.
The model code might look like this:

rr2/nested_forms/app/models/recipe.rb
class Recipe < ActiveRecord::Base
has_many :ingredients

end

rr2/nested_forms/app/models/ingredient.rb
class Ingredient < ActiveRecord::Base
belongs_to :recipe

end

A recipe has a name and a long text field of instructions. An ingredient belongs
to a recipe and has a name and a quantity. Recipes can have many ingredients.

When users create a recipe entry in the site’s user interface, they aren’t going
to think of each ingredient as a separate record, even though that’s how we’ve
chosen to model them in the database. They’re going to want to create a recipe
and its ingredients on a single form. We can enable this using the built-in
view helper fields_for().

When we create a form with form_for(), it yields an ActionView::Helpers::FormBuilder
to the block in our view. Rails developers usually call this local variable f. The
FormBuilder is responsible for wrapping the object for which the form is being
built, binding to any existing data in that object, and forming the necessary

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/rr2/code/rr2/nested_forms/app/models/recipe.rb
http://media.pragprog.com/titles/rr2/code/rr2/nested_forms/app/models/ingredient.rb
http://pragprog.com/titles/rr2
http://forums.pragprog.com/forums/rr2

parameter names to match the Rails parameter conventions also used by our
controllers.

If we call the fields_for() helper on the FormBuilder, Rails constructs a new FormBuilder
instance for us, but this time it wraps an associated record or set of records
rather than the primary subject of the form. Here’s an example that wraps
our Recipe and Ingredient models:

rr2/nested_forms/app/views/recipes/new.html.erb
<h1>Add a Recipe</h1>
<%= form_for @recipe do |f| %>

<p>
<%= f.label :name %>
<%= f.text_field :name %>
</p>

<p>
<%= f.label :instructions %>
<%= f.text_area :instructions %>
</p>
<h2>Ingredients</h2>
<p>
<%= f.fields_for(:ingredients) do |ingredients_form| %>

<%= ingredients_form.label :name %>
<%= ingredients_form.text_field :name %>
<%= ingredients_form.label :quantity %>
<%= ingredients_form.text_field :quantity %>

<% end %>
</p>
<%= f.submit %>

<% end %>

To signal to the model that we’re going to be pulling in all of these associated
attributes from the form, we’ll add the following declaration to our Recipe
model:

rr2/nested_forms/app/models/recipe.rb
accepts_nested_attributes_for :ingredients

Combined, these examples create a single form that posts, by convention, to
the RecipesController’s create() action. However, in addition to the usual fields for
the @recipe object, it also wraps fields for a new Ingredient. This seems great so
far, but if we were to load this page in our browser, we’d be greeted with an
empty list of Ingredients and no way to add one. This is because the fields_for()
method generates fields for an existing object. If we want to add new Ingredients,
we need to first create empty Ingredient objects and associate them with the
Recipe.

• Click HERE to purchase this book now. discuss

• 5

http://media.pragprog.com/titles/rr2/code/rr2/nested_forms/app/views/recipes/new.html.erb
http://media.pragprog.com/titles/rr2/code/rr2/nested_forms/app/models/recipe.rb
http://pragprog.com/titles/rr2
http://forums.pragprog.com/forums/rr2

One way to do that would be to add a new Ingredient to the @recipe when we
instantiate it in the new() action in the controller. That might look something
like this:

rr2/nested_forms/app/controllers/recipes_controller.rb
def new
@recipe = Recipe.new(:ingredients => [Ingredient.new])

end

With this in place, we should see one empty slot for an Ingredient when we view
the new Recipe form. Let’s look at the generated HTML for the part of the form
that wraps associated Ingredients:

<h2>Ingredients</h2>
<p>

<label for="recipe_ingredients_attributes_0_name">
Name

</label>
<input id="recipe_ingredients_attributes_0_name"

name="recipe[ingredients_attributes][0][name]"
size="30"
type="text" />

<label for="recipe_ingredients_attributes_0_quantity">
Quantity

</label>
<input id="recipe_ingredients_attributes_0_quantity"

name="recipe[ingredients_attributes][0][quantity]"
size="30"
type="text" />

</p>

From this generated HTML source we can start to get a feeling for how Rails
will parse and process this form for our controller. If we submit this form with
no values, we’ll see the following param structure on the server:

{"utf8"=>"✓",
"authenticity_token"=>"dUdoPRMb9EFdX0oCF6wJ0yhK7R2PAUQ9Dkz3epC0EdM=",
"recipe"=>{

"name"=>"",
"instructions"=>"",
"ingredients_attributes"=>{"0"=>{"name"=>"", "quantity"=>""}}},
"commit"=>"Create Recipe"

}

Notice that the ingredients_attributes key is nested in the main recipe Hash, which
means as per Rails convention, the method ingredients_attributes=() will be invoked
when a new Recipe is instantiated with this data. Guess what the accepts_nest-

6 •

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/rr2/code/rr2/nested_forms/app/controllers/recipes_controller.rb
http://pragprog.com/titles/rr2
http://forums.pragprog.com/forums/rr2

ed_attributes_for() macro does? That’s right! It metaprograms a method onto
Recipe, which defines ingredients_attributes=().

If all we need to do is add one ingredient to a Recipe when we create it, we’re
done. But this still leaves a little to be desired. For example, every recipe is
likely to need more than one ingredient, so providing for only a single addition
isn’t so great. Also, when we’re editing an existing recipe, it might be nice to
be able to delete associated ingredients. Let’s tackle those two problems.

There are many ways to allow users to add ingredients. The simplest way is
to simply preallocate a number of empty ingredients whenever the form is
loaded. Rather than hard-code this allocation into the controller as we saw
in the previous example, let’s make a nice model-level method to do it for us.
We’ll add a new instance method to the Recipe class:

rr2/nested_forms/app/models/recipe.rb
def with_blank_ingredients(n = 5)

n.times do
ingredients.build

end
self

end

Now in our call to form_for(), we can add a reference to this method. Because
with_blank_ingredients() returns self, its return value can be passed directly into
form_for():

rr2/nested_forms/app/views/recipes/new_prealloc.html.erb
<%= form_for @recipe.with_blank_ingredients do |f| %>

Now five blank ingredients will appear on the form. If we fill out the form,
those ingredients will be saved. If we were to use this form for our edit() action,
the existing ingredients would appear as well as five blank ingredient fields.
Preallocating a set number of blank form elements is a little ugly, but it works.
The one major problem with this implementation is that when we save the
form, the blank ingredients that we did not fill in will also be saved. We can
fix that by adding an option to our accepts_nested_attributes_for() call, as shown in
the following code:

accepts_nested_attributes_for :ingredients,
:reject_if => lambda { |attrs|

attrs.all? { |key, value| value.blank? }
}

This tells the ingredients_attributes=() not to save any Ingredient records whose
passed form values are blank.

• Click HERE to purchase this book now. discuss

• 7

http://media.pragprog.com/titles/rr2/code/rr2/nested_forms/app/models/recipe.rb
http://media.pragprog.com/titles/rr2/code/rr2/nested_forms/app/views/recipes/new_prealloc.html.erb
http://pragprog.com/titles/rr2
http://forums.pragprog.com/forums/rr2

Finally, let’s look at how to remove existing child records in a nested form.
One option is, of course, to simply create a button next to each Ingredient row
on the form that calls the destroy() action in the IngredientsController. But, our goal
here is to allow our users to do as much as possible on this one form, and
sending them on round-trips with page refreshes defeats the purpose. So,
instead, we can take advantage of yet another Rails convention.

If in our nested form fields we create an attribute called _destroy, we can use
it to ask accepts_nested_attributes_for() to automatically destroy nested records for
us. Here’s what we would have to add to our view:

<%= unless ingredients_form.object.new_record?
ingredients_form.check_box('_destroy') +
ingredients_form.label('_destroy', 'Remove')

end %>

So, if we’re working with an Ingredient that has yet to be saved, it doesn’t make
sense to ask to destroy it. If the record has been saved, we generate a checkbox
with the special attribute name _destroy. All that’s left to do now is to tell
accepts_nested_attributes_for() that it’s OK to destroy records. We do that with the
:allow_destroy option:

accepts_nested_attributes_for :ingredients,
:reject_if => lambda { |attrs|

attrs.all? { |key, value| value.blank? }
},

:allow_destroy => true

And, now, if we pass down a value for the _destroy attribute associated with
an Ingredient, Active Record will destroy that record for us!

Rather than preallocate an arbitrary number of new records for a nested form,
it’s common practice to use JavaScript to generate those rows. Using your
favorite JavaScript library, it can be trivial to templatize and dynamically add
elements to the browser’s document object model. The trick is in understand-
ing the structure necessary for those new elements. If we look at the generated
HTML for one of the Ingredient elements in our solution, we’ll see something
like this:

8 •

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/rr2
http://forums.pragprog.com/forums/rr2

<input id="recipe_ingredients_attributes_0_name"
name="recipe[ingredients_attributes][0][name]"
size="30"
type="text" />

The secret here is that the literal “0” doesn’t have to be a number! It just has
to be unique in the set of values we pass from the browser. So, when using
JavaScript to dynamically generate nested form elements, you can use any
trick for generating a per-form unique value. A good choice, for example,
might be to use the current timestamp.

An important point to note about nested forms is that although Rails makes
it relatively painless to implement them, big forms can clutter the view and
make life harder for your users. Before turning to a complex nested form on
your next application, ask yourself whether it would be better for the user to
break the form into multiple steps.

• Click HERE to purchase this book now. discuss

• 9

http://pragprog.com/titles/rr2
http://forums.pragprog.com/forums/rr2

