
Extracted from:

Effective Testing with RSpec 3
Build Ruby Apps with Confidence

This PDF file contains pages extracted from Effective Testing with RSpec 3, pub-
lished by the Pragmatic Bookshelf. For more information or to purchase a paper-

back or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2017 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Effective Testing with RSpec 3
Build Ruby Apps with Confidence

Myron Marston
Ian Dees

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Executive Editor: Susannah Davidson Pfalzer
Development Editor: Jacquelyn Carter
Indexing: Potomac Indexing, LLC
Copy Editor: Liz Welch
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2017 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-198-8
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—August 2017

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Introduction
“Our tests are broken again!” “Why does the suite take so long to run?” “What
value are we getting from these tests anyway?”

The years go by and the technologies change, but the complaints about auto-
mated tests are the same. Teams try to improve the code and end up fighting
test failures. Slow test times drag down productivity. Poorly written tests do a
bad job communicating, guiding the software design, or catching bugs.

No matter whether you’re new to automated tests or have been using them
for years, this book will help you write more effective tests. By effective, we
mean tests that give you more value than the time spent writing them.

We’ll be using the RSpec 3 framework to explore the art of writing tests. Every
aspect of RSpec was designed to solve some problem that developers have
encountered in the wild. With it, you can build Ruby apps with confidence.

How to Use This Book
With this book, you’ll learn RSpec 3 in three phases:

• Part I: Introductory exercises to get you acquainted with RSpec

• Part II: A worked example spanning several chapters, so that you can see
RSpec in action on a meaningfully sized project

• Parts III–V: A series of deep dives into specific aspects of RSpec, which
will help you get the most out of RSpec

We wrote this book to be read cover to cover. Whatever your level of expertise,
reading the chapters in order will give you the most value. However, if you’re
pressed for time and want to know where to look first, we can make a few
suggestions.

If you’re familiar with other test frameworks but new to RSpec, we recommend
that you read the first two parts of the book, and then try RSpec out in one

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/rspec3
http://forums.pragprog.com/forums/rspec3

of your own projects. As you do so, you’ll likely have questions that you can
consult specific deep-dive chapters for.

If you’re a long-time user of RSpec, you can start with Parts III, IV, and V.
These contain detailed recipes for situations you’ve likely encountered in the
wild. Later on, you can return to the beginning of the book for a refresher on
RSpec’s philosophy.

Finally, if you use RSpec 3 every day, keep the deep-dive parts of this book
nearby. You’ll find them handy to refer to in specific situations—we do, and
we’ve been using RSpec for years!

Code Snippets
We have provided code snippets throughout the book that show how RSpec
is used in real-world situations. Most of these examples are intended for
you to follow along with on your computer, particularly those in Part I and
Part II.

A typical snippet will contain one or more lines of Ruby code meant for you
to type into your text editor so that you can run them later. Here is an
example:

00-introduction/01/type_me_in.rb
puts "You can type me in; it's okay!"

We’ll show each code file a few lines at a time. If you need more context for
any given snippet, you can click the filename banner (in the eBook) or open
the book’s source code (linked at the end of this chapter) to view the entire
file at once.

Some code examples have no banner; these typically represent a session at
your terminal, either in interactive Ruby (IRB) or in a shell like Bash. For IRB
snippets, you’ll run the irb terminal command and then type in just the parts
after the green >> prompt:

>> %w[Type in just the bit after the prompt].join(' ')
=> "Type in just the bit after the prompt"

We’ll represent shell sessions with a green $ prompt instead. As with IRB
sessions, you won’t type in the prompt or the output lines, just the commands
after the prompt:

$ echo 'RSpec is great!'
RSpec is great!

Introduction • vi

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/rspec3/code/00-introduction/01/type_me_in.rb
http://pragprog.com/titles/rspec3
http://forums.pragprog.com/forums/rspec3

Later on in the book, we sometimes show isolated snippets from a larger
project; these are not meant for you to run on your computer. If you’re inter-
ested in running them on your own, you can download all the project files
from the book’s source code repository.

Most chapters have a “Your Turn” section with exercises for you to try. Don’t
skip these! Practicing on your own will ensure that each chapter builds on
the skills you’ve honed over the course of the book.

RSpec and Behavior-Driven Development
RSpec bills itself as a behavior-driven development (BDD) test framework.
We’d like to take a moment to talk about our use of that term, along with a
related term, test-driven development (TDD).

Without TDD, you might check your program’s behavior by running it
manually or by writing a one-off test harness. In situations where you
intend to scrap the program shortly afterward, these approaches are all
right. But when long-term maintenance is a priority, TDD provides important
benefits.

With TDD, you write each test case just before implementing the next bit of
behavior. When you have well-written tests, you wind up with more maintain-
able code. You can make changes with the confidence that your test suite
will let you know if you’ve broken something.

The term TDD is a bit of a misnomer, though. Despite the fact that it has the
word “test” in the name, TDD isn’t just about your tests. It’s about the way
they enable fearless improvements to your design. For this reason, Dan North
coined the term behavior-driven development in 2006 to encapsulate the most
important parts of TDD.1

BDD brings the emphasis to where it’s supposed to be: your code’s behavior.
The community stresses the importance of expressiveness in your tests,
something that we’ll be talking about a lot in this book. BDD is also about
treating your software requirements with the same kind of care, since they’re
yet another expression of behavior. It’s about involving all of your stakeholders
in writing acceptance tests.

1. https://dannorth.net/introducing-bdd/

• Click HERE to purchase this book now. discuss

RSpec and Behavior-Driven Development • vii

https://dannorth.net/introducing-bdd/
http://pragprog.com/titles/rspec3
http://forums.pragprog.com/forums/rspec3

As a test framework, RSpec fits into a BDD workflow quite well. RSpec helps
you “get the words right” and specify exactly what you mean in your tests.
You can easily practice the outside-in approach favored in BDD, where you
start with acceptance tests and move inward to unit tests.2 At every level,
your expressive tests will guide your software design.

However, RSpec and BDD are not synonymous. You don’t have to practice
BDD to use RSpec, nor use RSpec to practice BDD. And much of BDD is
outside the scope of RSpec; we won’t be talking in this book about stakeholder
involvement, for instance.

Who We Are
Myron Marston started using RSpec in 2009 and began contributing to it in
2010. He’s been its principal maintainer since late 2012. Here are just of the
few major improvements he’s made to RSpec:

• Composable matchers, which express exactly the pass/fail criteria you need

• rspec --bisect, which finds the minimal set of test cases to reproduce a failure

• Integrating RSpec’s assertions and mocking libraries with the Minitest
framework that ships with Ruby

• The --only-failures and --next-failure options that let you rerun just your failing
tests so that you can fix bugs more quickly

With the insider knowledge Myron provides in this book, you’ll learn all of
these techniques and more. By the end, you’ll be able to get free of just about
any problems you run into with your test suite.

Ian Dees stumbled on an old beta of RSpec in 2006. It was just what he
needed to build the automated acceptance tests for an embedded touchscreen
device. Since then, he’s used and taught RSpec for testing everything from
tiny microcontrollers to full-featured desktop and web apps.

Who You Are
We hope this book is useful to a wide range of developers, from people who
are just getting started with RSpec to those who have written thousands of
tests with it. That said, we have made a few assumptions in order to keep the
book from getting too bogged down with introductory material.

2. https://dannorth.net/whats-in-a-story/

Introduction • viii

• Click HERE to purchase this book now. discuss

https://dannorth.net/whats-in-a-story/
http://pragprog.com/titles/rspec3
http://forums.pragprog.com/forums/rspec3

First, we assume you’re familiar with Ruby. You don’t need to be an expert.
We stick to the basics of classes, methods, and blocks for the most part. We
will be directing you to install several Ruby gems, so it’ll be useful to be
familiar with that process as well. If you’re new to Ruby, we recommend you
first learn the language a bit using resources like Zed Shaw’s Learn Ruby the
Hard Way eBook or the Ruby tutorials at exercism.io.3,4

Although you’ll be building a web service over the course of several chapters,
we don’t assume that you’re already a web developer. Lots of folks use RSpec
to test command-line apps, GUI apps, and so on. We’ll explain a few web
development concepts as they come up during the discussion.

When we have content that’s meant for a specific audience—such as people
coming from an older version of RSpec or folks who are new to web develop-
ment—we’ll put that content in a sidebar.

A Note on Versions
The libraries we’re using in this book, both the ones from the RSpec framework
and other dependencies like Sinatra and Sequel, are designed to be backward-
compatible across minor version upgrades. The code examples you see here
should work just fine in future versions of these libraries—at least until their
next major versions.

While we’ve tested this code on multiple Ruby versions as far back as Ruby
2.2, you’ll have the best experience if you follow along with the exact same
versions we call out in the text: Ruby 2.4, RSpec 3.6, and so on. With the
same versions we use, you should get output that closely mirrors what we
show in the book.

Online Resources
This book has a website.5 There, you’ll find links to source code, discussion
forums, and errata. We’ve also set up GitHub repositories containing all the
examples in the book, plus a version of the project you’ll build in Building an
App With RSpec 3.6

3. https://learnrubythehardway.org
4. http://exercism.io/languages/ruby/about
5. https://pragprog.com/book/rspec3/effective-testing-with-rspec-3
6. https://github.com/rspec-3-book

• Click HERE to purchase this book now. discuss

A Note on Versions • ix

https://learnrubythehardway.org
http://exercism.io/languages/ruby/about
https://pragprog.com/book/rspec3/effective-testing-with-rspec-3
https://github.com/rspec-3-book
http://pragprog.com/titles/rspec3
http://forums.pragprog.com/forums/rspec3

For more information about RSpec, you can turn to the official site and the
full developer documentation.7,8

Myron Marston
Lead Maintainer of RSpec

myron.marston@gmail.com
Seattle, WA, August 2017

Ian Dees
Senior Software Engineer, New Relic

undees@gmail.com
Portland, OR, August 2017

7. http://rspec.info
8. http://rspec.info/documentation/

Introduction • x

• Click HERE to purchase this book now. discuss

http://rspec.info
http://rspec.info/documentation/
http://pragprog.com/titles/rspec3
http://forums.pragprog.com/forums/rspec3

