

Ruby 1.9 Socket Library

Dave Thomas

with Chad Fowler

Andy Hunt

The Pragmatic Bookshelf

Raleigh, North Carolina Dallas, Texas

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.

Where those designations appear in this book, and The Pragmatic Programmers, LLC was aware of a trademark claim,

the designations have been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic

Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g device are trademarks of The Pragmatic

Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes no responsibility for errors

or omissions, or for damages that may result from the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create better software and have more

fun. For more information, as well as the latest Pragmatic titles, please visit us at http://www.pragprog.com.

Copyright © 2010 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any means,

electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10:

ISBN-13:

Printed on acid-free paper.

1.0 printing, November 2010

Version: 2010-11-11

http://www.pragprog.com

Contents

1 Introduction 5

2 Socket Library 6

Addrinfo: 7 BasicSocket: 14 Socket::Constants: 18 Socket: 20 IPSocket: 28

TCPSocket: 29 SOCKSSocket: 30 TCPServer: 31 UDPSocket: 32

UnixSocket: 34 UnixServer: 36

A Bibliography 37

Chapter 1

Introduction
This material was, for 10 years, an appendix in Programming Ruby [TFH08].1 However, as of

the Tenth Anniversary printing in November, 2010, I’ve decided to extract this appendix from

the printed book and make it freely available online.

Back when the first edition of Programming Ruby appeared, knowing the low-level socket API

was important—it was how you’d communicate across a network. But as Ruby matured, so did

its libraries, both built-in and external. Today, you’re unlikely to be grovelling around at the

socket level. Instead you’ll use one of the higher level libraries or frameworks to get the job

done.

So rather than kill a bunch a trees by printing thousands of copies of an appendix that few people

would need, I decided to remove it from the book. But rather than simply discard the material,

I’ve updated it for Ruby 1.9.2 and made it available in electronic form (PDF, mobi, and epub)

for free.

Dave Thomas, November 2010

1. http://pragprog.com/titles/ruby3

http://pragprog.com/titles/ruby3

Chapter 2

Socket Library
The socket and network libraries are such important parts of integrating Ruby applications with

the Internet and other communications-based environments. However, the chances are pretty

good that you’ll never need to code down at this level—if you’re writing a web applications,

tools such as Rack abstract the communications layers away. If you want to write a socket-based

server, the GServer library will keep you away from the messy details. So this documentation

is primarily of interested to those hardy, dedicated folks who write the frameworks and libraries

that the rest of us use.

The socket classes form a hierarchy based on class IO.

IO

BasicSocket

IPSocket

TCPSocket

TCPServer

UDPSocket

Socket

UNIXSocket

UNIXServer

Because the socket calls are implemented in a library, you’ll need to remember to add the fol-

lowing line to your code:

require 'socket'

ADDRINFO 7

Class
Addrinfo < Data

The socket classes used to manipulate addresses using something called a struct sockaddr, 1.9.2

which is effectively an opaque binary string. As of Ruby 1.9.2, the library now uses Addrinfo

objects to represent addresses. For now, both the opaque string and an Addrinfo object are

accepted whereever an address is expected.

Socket-based programming spans a range of communications protocols, addressing schemes,

and transport mechanisms. The interested reader should have a look at Unix Network Program-

ming, Volume 1: Networking APIs: Sockets and Xti [Ste98] by the late W. Richard Stevens for

the definitive description of how this addressing works.

The Addrinfo class captures the protocol family (also called the communications domain), the

socket type, the protocol, and the socket address. Between them, these four fields uniquely

identify a socket endpoint.

The socket address (often called a sockaddr) has its own internal structure. Just to make things

interesting, that structure varies depending on the protocol family of the socket. A PF_INET

socket, representing a TCP or UDP protocol, will need an IP address and a port, whereas a

PF_LOCAL socket (sometimes called PF_UNIX) needs a path to a local file.

You construct a sockaddr as either an array or as a binary string. The array form is most com-

monly used when people create the sockaddr, and the binary form when it is returned by API

calls such as Socket#sockaddr_in.

For PF_INET and PF_INET6 socket, the sockaddr array should contain

[family, port, name, address]

family: The protocol family, expressed as an integer (Socket::PF_INET) or a string with or

without the leading PF_ ("PF_INET", "INET", "INET6").

port: is the numeric port number.

name: Is not used in address manipulation—it is used as a documentation field when creating

addr.inspect.

address: The IP address as a string (a dotted quad for INET and a colon separated set of hex

digits for INET6).

The address array for Unix domain sockets looks like

[family, path]

The family is Socket::PF_LOCAL (or "PF_LOCAL" or "LOCAL") and the path is a locat

filesystem path.

Report erratum

this copy is (1.0 printing, November 2010)

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=7

ADDRINFO 8

Class methods

foreach

Addrinfo.foreach(nodename, service) { | addr | . . . } → [addr...]

Addrinfo.foreach(nodename, service, family) { | addr | . . . } → [addr...]

Addrinfo.foreach(nodename, service, family, socktype) { | addr | . . . } → [addr...]

Addrinfo.foreach(nodename, service, family, socktype, protocol) { | addr | . . . } → [addr...]

Addrinfo.foreach(nodename, service, family, socktype, protocol, flags) { | addr | . . . } →

[addr...]

Calls Addrinfo#getsockinfo with the given parameters, then passes each of the returned addr

objects to the block. Returns the array returned by getaddrinfo.

getaddrinfo

Addrinfo.getaddrinfo(nodename, service) → [addr...]

Addrinfo.getaddrinfo(nodename, service, family) → [addr...]

Addrinfo.getaddrinfo(nodename, service, family, socktype) → [addr...]

Addrinfo.getaddrinfo(nodename, service, family, socktype, protocol) → [addr...]

Addrinfo.getaddrinfo(nodename, service, family, socktype, protocol, flags) → [addr...]

Returns all possible Address objects for the given nodename and service. The result set may be

constrained to addresses that have a particular family, socket type, protocol. The flags may be a

bitwise OR of the Socket::AI_xxx values.

require 'socket'
puts Addrinfo.getaddrinfo('localhost', 80).map(&:inspect)

produces:

#<Addrinfo: [::1]:80 UDP (localhost)>

#<Addrinfo: [::1]:80 TCP (localhost)>

#<Addrinfo: [fe80::1%lo0]:80 UDP (localhost)>

#<Addrinfo: [fe80::1%lo0]:80 TCP (localhost)>

#<Addrinfo: 127.0.0.1:80 UDP (localhost)>

#<Addrinfo: 127.0.0.1:80 TCP (localhost)>

ip Addrinfo.ip(host) → addr

Returns an Addrinfo with the address portion only filled in. The given host is looked up, and the

address is extracted from the first sockaddr returned. The protocol, socket type, and port fields

of the address are left as zero.

require 'socket'
Addrinfo.ip("127.0.0.1") # => #<Addrinfo: 127.0.0.1>

Addrinfo.ip("localhost") # => #<Addrinfo: ::1 (localhost)>

Report erratum

this copy is (1.0 printing, November 2010)

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=8

ADDRINFO 9

new Addrinfo.new(sockaddr 〈 , family 〈 , socktype 〈 , protocol 〉 〉 〉 → addr

Creates an Addrinfo object for the given Unix or INET6 sockaddr. The format of sockaddr

is described at the start of this section. Normally the family, socktype, and protocol can be

inferred from the sockaddr—if specified they override the sockaddr information. The family

and socktype can be specified as integers (using the constants defined in class Socket) or as

symbols or strings. The protocol can only be specified as an integer.

require 'socket'
p Addrinfo.new(["LOCAL", "/tmp/control_socket"])
p Addrinfo.new(["INET", 80, "dave.local", "127.0.0.1"])

produces:

#<Addrinfo: /tmp/control_socket SOCK_STREAM>

#<Addrinfo: 127.0.0.1:80 (dave.local)>

tcp Addrinfo.tcp(host, port) → addr

Returns a TCP Addrinfo object for the given host and port.

require 'socket'
Addrinfo.tcp('localhost', 80) # => #<Addrinfo: [::1]:80 TCP (localhost)>

Addrinfo.tcp('localhost', 'www') # => #<Addrinfo: [::1]:80 TCP (localhost:www)>

Addrinfo.tcp('127.0.0.1', 'www') # => #<Addrinfo: 127.0.0.1:80 TCP (:www)>

udp Addrinfo.udp(host, port) → addr

Returns a UDP Addrinfo object for the given host and port.

require 'socket'
Addrinfo.udp('localhost', 'ntp') # => #<Addrinfo: [::1]:123 UDP (localhost:ntp)>

unix Addrinfo.unix(path, socktype="SOCK_STREAM") → addr

Returns a PF_LOCAL Addrinfo object for the given path.

require 'socket'
Addrinfo.unix('/tmp/mysock') # => #<Addrinfo: /tmp/mysock

.. SOCK_STREAM>

Addrinfo.unix('/tmp/mysock', :SOCK_DGRAM) # => #<Addrinfo: /tmp/mysock

.. SOCK_DGRAM>

Report erratum

this copy is (1.0 printing, November 2010)

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=9

ADDRINFO 10

Instance methods

Predicates

addr.ip? → true or false

addr.ipv4? → true or false

addr.ipv4_loopback? → true or false

addr.ipv4_multicast? → true or false

addr.ipv4_private? → true or false

addr.ipv6? → true or false

addr.ipv6_linklocal? → true or false

addr.ipv6_loopback? → true or false

addr.ipv6_mc_global? → true or false

addr.ipv6_mc_linklocal? → true or false

addr.ipv6_mc_nodelocal? → true or false

addr.ipv6_mc_orglocal? → true or false

addr.ipv6_mc_sitelocal? → true or false

addr.ipv6_multicast? → true or false

addr.ipv6_sitelocal? → true or false

addr.ipv6_unspecified? → true or false

addr.ipv6_v4compat? → true or false

addr.ipv6_v4mapped? → true or false

addr.unix? → true or false

Returns a boolean depending on the value of the given property.

Properties

addr.afamily → integer

addr.ip_port → integer

addr.pfamily → integer

addr.protocol → integer

addr.socktype → integer

addr.unix_path → string

Returns the given property of addr.

bind
addr.bind → sock

addr.bind { | sock | . . . } → obj

Binds a socket to the address and protocol given by addr. With no block returns the socket

object. With a block, invokes it with the socket, closes the socket when the block returns, and

returns the value of the block.

Report erratum

this copy is (1.0 printing, November 2010)

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=10

ADDRINFO 11

canonname addr.canonname → string or nil

If the address was created with the Socket::AI_CANONNAME option, return the actual host

name, resolving any CNAMEs.

require 'socket'
addr = Addrinfo.getaddrinfo("pragprog.com", 80, :INET, :STREAM, nil, Socket::AI_CANONNAME)

addr.first.canonname # => "pragprog.com"

addr = Addrinfo.getaddrinfo("wiki.pragprog.com", 80, :INET, :STREAM, nil, Socket::AI_CANONNAME)

addr.first.canonname # => "pragprog.com"

addr = Addrinfo.getaddrinfo("wiki.pragprog.com", 80, :INET, :STREAM, nil)

addr.first.canonname # => nil

connect
addr.connect → sock

addr.connect { | sock | . . . } → obj

Creates a socket connection to the address and protocol given by addr. With no block returns

the socket object. With a block, invokes it with the socket, closes the socket when the block

returns, and returns the value of the block.

require 'socket'
addr = Addrinfo.tcp('localhost', 80)

addr.connect do |socket|

socket.puts "GET / HTTP/1.0\r\n\r\n"
3.times { puts socket.gets }

end

produces:

HTTP/1.1 200 OK

Date: Thu, 11 Nov 2010 19:01:27 GMT

Server: Apache/2.2.14 (Unix) mod_ssl/2.2.14 OpenSSL/0.9.8l DAV/2

connect_from
addr.connect_from(〈 local_addr 〉∗) → sock

addr.connect_from(〈 local_addr 〉∗) { | sock | . . . } → obj

Works like Addrinfo#connect, but binds the local end of the connection to any interface or port

given as parameters. The parameters can be an Addrinfo object, the same parameters taken by

Addrinfo.getaddrinfo if addr is an PF_INET object, or a path if addr is a PF_LOCAL object.

connect_to
addr.connect_to(〈 remote_addr 〉∗) → sock

addr.connect_to(〈 remote_addr 〉∗) { | sock | . . . } → obj

Works like Addrinfo#connect_from, but addr specifies the local end and the parameters specify

the remote end of the connection.

Report erratum

this copy is (1.0 printing, November 2010)

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=11

ADDRINFO 12

family_addrinfo addr.family_addrinfo(〈 args 〉∗) → new_addr

Constructs a new Addrinfo with the same protocol family as addr but with a different address.

require 'socket'
addr = Addrinfo.tcp('127.0.0.1', 80)

addr.family_addrinfo('google.com', 'ftp') # => #<Addrinfo: 74.125.45.99:21 TCP

.. (google.com:ftp)>

getnameinfo addr.getnameinfo(options=0) → [node, service]

Extract the node name (or address) and the service name (or port number) from the sockaddr

help in addr. The options are a bitwose OR of the Socket::NI_xxx constants.

require 'socket'
a = Addrinfo.tcp('pragprog.com', 80)

a # => #<Addrinfo: 209.251.185.98:80 TCP

.. (pragprog.com)>

a.getnameinfo # => ["209.251.185.98", "http"]

a.getnameinfo(Socket::NI_NUMERICHOST) # => ["209.251.185.98", "http"]

a.getnameinfo(Socket::NI_NUMERICSERV) # => ["209.251.185.98", "80"]

inspect_sockaddr addr.inspect_sockaddr → string

Inspect just the sockaddr portion of addr.

ip_unpack addr.ip_unpack → [host, port]

Returns the numeric host and port for an AF_INET Addrinfo.

require 'socket'
Addrinfo.tcp("pragprog.com", "www").ip_unpack # => ["209.251.185.98", 80]

ipv6_to_ipv4 addr.ipv6_to_ipv4 → ipv4_addr or nil

If addr is an IPV4-mapped IPV6 address, return a new Addrinfo containing the corresponding

IPV4 address.

require 'socket'
Addrinfo.ip("::ffff:192.0.2.128").ipv6_to_ipv4 # => #<Addrinfo: 192.0.2.128>

Addrinfo.ip("::1").ipv6_to_ipv4 # => nil

Report erratum

this copy is (1.0 printing, November 2010)

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=12

ADDRINFO 13

listen
addr.listen(backlog=5) → sock

addr.listen(backlog=5) { | sock | . . . } → obj

Binds a socket to addr and then issues a listen on it. With no block, returns the socket. With

a block, passes the socket as a parameter, closes the socket at the end, and returns the block’s

value.

to_sockaddr addr.to_sockaddr → binary_string

Returns the sockaddr component of addr as a packed binary string. (For the layout, see the Unix

documentation for inet(4) and unix(4).

Report erratum

this copy is (1.0 printing, November 2010)

http://www.freebsd.org/cgi/man.cgi?query=inet&sektion=4
http://www.freebsd.org/cgi/man.cgi?query=unix&sektion=4
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=13

BASICSOCKET 14

Class
BasicSocket < IO

BasicSocket is an abstract base class for all other socket classes.

Class methods

do_not_reverse_lookup BasicSocket.do_not_reverse_lookup → true or false

Returns the value of the global reverse lookup flag.

do_not_reverse_lookup= % BasicSocket.do_not_reverse_lookup = true or false

Sets the global reverse lookup flag. If set to true, queries on remote addresses will return the

numeric address but not the host name.

Previously this flag defaulted to false, which caused the occasional performance problem. It 1.9.2

now defaults to true.

for_fd BasicSocket.for_fd(fd) → sock

Wraps an already open file descriptor into a socket object.

Instance methods

close_read sock.close_read → nil

Closes the readable connection on this socket.

close_write sock.close_write → nil

Closes the writable connection on this socket.

connect_address sock.connect_address → addr_info

Return the address that should be used to connect to this socket. Normally this is the same as 1.9.2

local_address, but the IPV4 and IPV4 unspecified addresses are replaced by their corresponding

loopback addresses.

require 'socket'
listening_socket = Addrinfo.tcp('::', 0).listen

listening_socket.local_address # => #<Addrinfo: [::]:56676 TCP>

listening_socket.connect_address # => #<Addrinfo: [::1]:56676 TCP>

Report erratum

this copy is (1.0 printing, November 2010)

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=14

BASICSOCKET 15

getpeereid sock.getpeereid → [euid, egid]

Return the effective user ID and effective group ID of the socket. 1.9.2

getpeername sock.getpeername → string

Returns the struct sockaddr structure associated with the other end of this socket connection.

getsockname sock.getsockname → string

Returns the struct sockaddr structure associated with sock.

getsockopt sock.getsockopt(level, optname) → sockopt

Returns the value of the specified option as a Socket::Option object. The level is an integer,

string, or symbol drawn from the SOL_xxx constants, and the option is an integer, symbol, or

string drawn from the SO_xxx constants.

require 'socket'
sock = Socket.new(Socket::PF_INET, Socket::SOCK_STREAM) # => #<Socket:fd 3>

opt = sock.getsockopt(:SOL_SOCKET, :SO_DEBUG) # => #<Socket::Option:

.. INET SOCKET DEBUG

.. 0>

opt.bool # => false

opt = sock.getsockopt(:SOL_SOCKET, :SO_RCVBUF) # => #<Socket::Option:

.. INET SOCKET RCVBUF

.. 262140>

opt.int # => 262140

local_address sock.local_address → addr_info

Return the address information for the local end of a socket. 1.9.2

require 'socket'
s = Socket.tcp('google.com', 80)

s.local_address # => #<Addrinfo: 192.168.1.17:56677 TCP>

s.remote_address # => #<Addrinfo: 74.125.45.99:80 TCP>

recv sock.recv(len, 〈 , flags 〉) → string

Receives up to len bytes from sock.

Report erratum

this copy is (1.0 printing, November 2010)

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=15

BASICSOCKET 16

recvmsg
sock.recvmsg(max_data_len=nil, flags=0, max_control_len=nil, options={}) → [data,

sender_addr, flags, controls]

Uses the recvmsg(2) call to receive a message from a socket. One use of this is to pass open 1.9.2

file descriptors between processes. The ancillary parameter can be the three-element array

[cmsg_level, cmsg_type, cmsg_data] or a Socket::AncillaryData object.

recvmsg_nonblock
sock.recvmsg_nonblock(max_data_len=nil, flags=0,

max_control_len=nil, options={}) → [data, sender_addr, flags, controls]

Nonblocking version of recvmsg. 1.9.2

recv_nonblock sock.recv_nonblock(len, 〈 , flags 〉) → string

Receives up to len bytes from sock after first setting the socket into nonblocking mode. If the 1.9

underlying recvfrom call returns 0, an empty string is returned.

remote_address sock.remote_address → addr_info

Return the address information for the remote end of a socket. 1.9.2

require 'socket'
s = Socket.tcp('google.com', 80)

s.local_address # => #<Addrinfo: 192.168.1.17:56678 TCP>

s.remote_address # => #<Addrinfo: 74.125.45.99:80 TCP>

send sock.send(string, flags, 〈 , to 〉) → int

Sends string over sock. If specified, to is a struct sockaddr or an Addrinfo specifying the recipient 1.9.2

address. flags are the sum of one or more of the MSG_ options (listed on page 18). Returns the

number of characters sent.

sendmsg sock.sendmsg(data, flags=0, 〈 , to 〈 , ancillary 〉∗ 〉) → int

Uses the sendmsg(2) call to send a message with optional access rights data to another socket. 1.9.2

One use of this is to pass open file descriptors between processes. The ancillary parameter

can be the three-element array [cmsg_level, cmsg_type, cmsg_data] or a Socket::AncillaryData

object.

Report erratum

this copy is (1.0 printing, November 2010)

http://www.freebsd.org/cgi/man.cgi?query=recvmsg&sektion=2
http://www.freebsd.org/cgi/man.cgi?query=sendmsg&sektion=2
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=16

BASICSOCKET 17

sendmsg_nonblock sock.sendmsg_nonblock(data, flags=0, 〈 , to 〈 , ancillary 〉∗ 〉) → int

Nonblocking version of sendmsg. 1.9.2

setsockopt sock.setsockopt(level, optname, optval) → 0

Sets a socket option. level is one of the socket-level options (listed on the next page). optname

and optval are protocol specific—see your system documentation for details.

shutdown sock.shutdown(how=2) → 0

Shuts down the receive (how == 0), sender (how == 1), or both (how == 2), parts of this socket.

Report erratum

this copy is (1.0 printing, November 2010)

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=17

SOCKET::CONSTANTS 18

Module
Socket::Constants

Defines the constants used as options and parameters throughout the socket library.

Constants are available only on architectures that support the related facility.

Types

SOCK_DGRAM, SOCK_PACKET, SOCK_RAW, SOCK_RDM, SOCK_SEQPACKET,

SOCK_STREAM

Protocol families

PF_APPLETALK, PF_ATM, PF_AX25, PF_CCITT, PF_CHAOS, PF_CNT, PF_COIP,

PF_DATAKIT, PF_DEC, PF_DLI, PF_ECMA, PF_HYLINK, PF_IMPLINK, PF_INET,

PF_INET6, PF_IPX, PF_ISDN, PF_ISO, PF_KEY, PF_LAT, PF_LINK, PF_LOCAL, PF_MAX,

PF_NATM, PF_NDRV, PF_NETBIOS, PF_NETGRAPH, PF_NS, PF_OSI, PF_PACKET, PF_PIP,

PF_PPP, PF_PUP, PF_ROUTE, PF_RTIP, PF_SIP, PF_SNA, PF_SYSTEM, PF_UNIX,

PF_UNSPEC, PF_XTP

Address families

AF_APPLETALK, AF_ATM, AF_AX25, AF_CCITT, AF_CHAOS, AF_CNT, AF_COIP,

AF_DATAKIT, AF_DEC, AF_DLI, AF_E164, AF_ECMA, AF_HYLINK, AF_IMPLINK,

AF_INET, AF_INET6, AF_IPX, AF_ISDN, AF_ISO, AF_LAT, AF_LINK, AF_LOCAL,

AF_MAX, AF_NATM, AF_NDRV, AF_NETBIOS, AF_NETGRAPH, AF_NS, AF_OSI,

AF_PACKET, AF_PPP, AF_PUP, AF_ROUTE, AF_SIP, AF_SNA, AF_SYSTEM, AF_UNIX,

AF_UNSPEC

Send/receive options

MSG_COMPAT, MSG_CONFIRM, MSG_CTRUNC, MSG_DONTROUTE, MSG_DONTWAIT,

MSG_EOF, MSG_EOR, MSG_ERRQUEUE, MSG_FIN, MSG_FLUSH, MSG_HAVEMORE,

MSG_HOLD, MSG_MORE, MSG_NOSIGNAL, MSG_OOB, MSG_PEEK, MSG_PROXY,

MSG_RCVMORE, MSG_RST, MSG_SEND, MSG_SYN, MSG_TRUNC, MSG_WAITALL

Socket-level options

SOL_ATALK, SOL_AX25, SOL_IP, SOL_IPX, SOL_SOCKET, SOL_TCP, SOL_UDP

Socket options

SO_ACCEPTCONN, SO_ACCEPTFILTER, SO_ALLZONES, SO_ATTACH_FILTER,

SO_BINDTODEVICE, SO_BINTIME, SO_BROADCAST, SO_DEBUG,

SO_DETACH_FILTER, SO_DONTROUTE, SO_DONTTRUNC, SO_ERROR,

SO_KEEPALIVE, SO_LINGER, SO_MAC_EXEMPT, SO_NKE, SO_NOSIGPIPE,

SO_NO_CHECK, SO_NREAD, SO_OOBINLINE, SO_PASSCRED, SO_PEERCRED,

SO_PEERNAME, SO_PRIORITY, SO_RCVBUF, SO_RCVLOWAT, SO_RCVTIMEO,

SO_RECVUCRED, SO_REUSEADDR, SO_REUSEPORT,

SO_SECURITY_AUTHENTICATION, SO_SECURITY_ENCRYPTION_NETWORK,

SO_SECURITY_ENCRYPTION_TRANSPORT, SO_SNDBUF, SO_SNDLOWAT,

Report erratum

this copy is (1.0 printing, November 2010)

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=18

SOCKET::CONSTANTS 19

SO_SNDTIMEO, SO_TIMESTAMP, SO_TIMESTAMPNS, SO_TYPE, SO_USELOOPBACK,

SO_WANTMORE, SO_WANTOOBFLAG

Qualtity-of-service options

SOPRI_BACKGROUND, SOPRI_INTERACTIVE, SOPRI_NORMAL

Multicast options

IP_ADD_MEMBERSHIP, IP_ADD_SOURCE_MEMBERSHIP, IP_BLOCK_SOURCE,

IP_DEFAULT_MULTICAST_LOOP, IP_DEFAULT_MULTICAST_TTL, IP_DONTFRAG,

IP_DROP_MEMBERSHIP, IP_DROP_SOURCE_MEMBERSHIP, IP_FREEBIND,

IP_HDRINCL, IP_IPSEC_POLICY, IP_MAX_MEMBERSHIPS, IP_MINTTL, IP_MSFILTER,

IP_MTU, IP_MTU_DISCOVER, IP_MULTICAST_IF, IP_MULTICAST_LOOP,

IP_MULTICAST_TTL, IP_ONESBCAST, IP_OPTIONS, IP_PASSSEC, IP_PKTINFO,

IP_PKTOPTIONS, IP_PMTUDISC_DO, IP_PMTUDISC_DONT, IP_PMTUDISC_WANT,

IP_PORTRANGE, IP_RECVDSTADDR, IP_RECVERR, IP_RECVIF, IP_RECVOPTS,

IP_RECVRETOPTS, IP_RECVSLLA, IP_RECVTOS, IP_RECVTTL, IP_RETOPTS,

IP_ROUTER_ALERT, IP_SENDSRCADDR, IP_TOS, IP_TTL, IP_UNBLOCK_SOURCE,

IP_XFRM_POLICY

TCP options

TCP_CORK, TCP_DEFER_ACCEPT, TCP_INFO, TCP_KEEPCNT, TCP_KEEPIDLE,

TCP_KEEPINTVL, TCP_LINGER2, TCP_MAXSEG, TCP_MD5SIG, TCP_NODELAY,

TCP_NOOPT, TCP_NOPUSH, TCP_QUICKACK, TCP_SYNCNT, TCP_WINDOW_CLAMP

getaddrinfo error codes

EAI_ADDRFAMILY, EAI_AGAIN, EAI_BADFLAGS, EAI_BADHINTS, EAI_FAIL,

EAI_FAMILY, EAI_MAX, EAI_MEMORY, EAI_NODATA, EAI_NONAME,

EAI_OVERFLOW, EAI_PROTOCOL, EAI_SERVICE, EAI_SOCKTYPE, EAI_SYSTEM

ai_flag values

AI_ADDRCONFIG, AI_ALL, AI_CANONNAME, AI_DEFAULT, AI_MASK,

AI_NUMERICHOST, AI_NUMERICSERV, AI_PASSIVE, AI_V4MAPPED,

AI_V4MAPPED_CFG

Report erratum

this copy is (1.0 printing, November 2010)

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=19

SOCKET 20

Class
Socket < BasicSocket

Class Socket provides access to the operating system socket implementation. It can be used to

provide more system–specific functionality than the protocol-specific socket classes but at the

expense of greater complexity.

Class methods

accept_loop Socket.accept_loop(sockets...) { | socket, client_addr_info | . . . }

Takes a list of listening sockets or arrays of listening sockets. When a connection arrives on any, 1.9.2

accepts it and invokes the block, passing in the new socket and the client address. The block is

invoked serially—if you need to handle multiple concurrent connections, you’ll need to do your

own threading in the block (or simply use listen, accept, and select yourself.

require 'socket'
Socket.getaddrinfo('www.microsoft.com', 'http').each do |addr|

puts addr.join(", ")
end

produces:

AF_INET, 80, 207.46.170.123, 207.46.170.123, 2, 2, 17

AF_INET, 80, 207.46.170.123, 207.46.170.123, 2, 1, 6

AF_INET, 80, 207.46.170.10, 207.46.170.10, 2, 2, 17

AF_INET, 80, 207.46.170.10, 207.46.170.10, 2, 1, 6

getaddrinfo
Socket.getaddrinfo(hostname, port,

〈 , family 〈 , socktype 〈 , protocol 〈 , flags 〈 , rlookup 〉 〉 〉 〉 〉) → array

Returns an array of arrays describing the given host and port (optionally qualified as shown).

Each subarray contains the address family, port number, host name, host IP address, protocol

family, socket type, and protocol. The rlookup parameter overrides the default reverse name 1.9.2

lookup option.

require 'socket'
Socket.getaddrinfo('www.microsoft.com', 'http').each do |addr|

puts addr.join(", ")
end

produces:

AF_INET, 80, 207.46.170.123, 207.46.170.123, 2, 2, 17

AF_INET, 80, 207.46.170.123, 207.46.170.123, 2, 1, 6

AF_INET, 80, 207.46.170.10, 207.46.170.10, 2, 2, 17

AF_INET, 80, 207.46.170.10, 207.46.170.10, 2, 1, 6

gethostbyaddr Socket.gethostbyaddr(addr, type=AF_INET) → array

Returns the host name, address family, and sockaddr component for the given address.

Report erratum

this copy is (1.0 printing, November 2010)

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=20

SOCKET 21

require 'socket'
a = Socket.gethostbyname("221.186.184.68")
res = Socket.gethostbyaddr(a[3], a[2])

res.join(', ') # => "carbon.ruby-lang.org, 68.184.186.221.in-addr.arpa,

.. 68.64.184.186.221.in-addr.arpa, 2, \xDD\xBA\xB8D"

gethostbyname Socket.gethostbyname(hostname) → array

Returns a four-element array containing the canonical host name, a subarray of host aliases, the

address family, and the address portion of the sockaddr structure.

require 'socket'
a = Socket.gethostbyname("63.68.129.130")
a.join(', ') # => "63.68.129.130, , 2, ?D\x81\x82"

gethostname Socket.gethostname → string

Returns the name of the current host.

require 'socket'
Socket.gethostname # => "wide-boy"

getnameinfo Socket.getnameinfo(addr 〈 , flags 〉) → array

Looks up the given address, which may be either a string containing a sockaddr, a Addrinfo, or a 1.9.2

three- or four-element array. If addr is an array, it should contain the string address family, the

port (or nil), and the host name or IP address. If a fourth element is present and not nil, it will be

used as the host name. Returns a canonical host name (or address) and port number as an array.

require 'socket'
puts Socket.getnameinfo(["AF_INET", '23', 'www.ruby-lang.org'])

produces:

carbon.ruby-lang.org

telnet

getservbyname Socket.getservbyname(service, proto=’tcp’) → int

Returns the port corresponding to the given service and protocol.

require 'socket'
Socket.getservbyname("telnet") # => 23

Report erratum

this copy is (1.0 printing, November 2010)

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=21

SOCKET 22

getservbyport Socket.getservbyport(port, proto=’tcp’) → string

Returns the port corresponding to the given service and protocol. 1.9

require 'socket'
Socket.getservbyport(23) # => "telnet"

ip_address_list Socket.ip_address_list → [addr...]

Retrurns the addresses of the local network interfaces. 1.9.2

require 'socket'
puts Socket.ip_address_list.map(&:inspect)

produces:

#<Addrinfo: ::1>

#<Addrinfo: fe80::1%lo0>

#<Addrinfo: 127.0.0.1>

#<Addrinfo: fdd7:b0e5:d31f:2e70:225:4bff:feb8:f12c>

#<Addrinfo: fe80::225:ff:fe44:ac61%en1>

#<Addrinfo: 192.168.1.17>

#<Addrinfo: fe80::225:4bff:feb8:f12c%en2>

#<Addrinfo: 169.254.97.62>

new Socket.new(domain, type 〈 , protocol 〉) → sock

Creates a socket using the given parameters. If missing, the protocol parameter is inferred from 1.9.2

the other two.

open Socket.open(domain, type, protocol) → sock

Synonym for Socket.new.

pack_sockaddr_in Socket.pack_sockaddr_in(port, host) → str_address

Given a port and a host, returns the (system dependent) AF_INET sockaddr structure as a string

of bytes.

require 'socket'
addr = Socket.pack_sockaddr_in(80, "pragprog.com") # Pragprog.com is 65.74.171.137

addr.unpack("CCnC4") # => [16, 2, 80, 209, 251, 185, 98]

pack_sockaddr_un Socket.pack_sockaddr_un(path) → str_address

Given a path to a Unix socket, returns the (system dependent) sock_addr_un structure as a string

of bytes. Available only on boxes supporting the Unix address family.

Report erratum

this copy is (1.0 printing, November 2010)

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=22

SOCKET 23

require 'socket'
sock = UNIXServer.open("/tmp/sample")
addr = Socket.pack_sockaddr_un("/tmp/sample")
addr[0,20] # => "\x00\x01/tmp/sample\x00\x00\x00\x00\

.. x00\x00\x00"

pair
Socket.pair(domain, type 〈 , protocol 〉) → array

Socket.pair(domain, type 〈 , protocol 〉) { | sock1, sock2 | . . . } → obj

Returns an array containing a pair of connected, anonymous Socket objects with the given

domain, type, and protocol. If omitted, the protocol parameter is inferred from the other two. If 1.9.2

a block is given, it is passed the two sockets, and the first socket is closed when the block exits.

socketpair Socket.socketpair(domain, type, protocol) → array

Synonym for Socket.pair.

sockaddr_in Socket.sockaddr_in(port, host) → str_address

Synonym for pack_sockaddr_in. 1.9

sockaddr_un Socket.sockaddr_un(path) → str_address

Synonym for pack_sockaddr_un. 1.9

socket_pair Socket.socket_pair(domain, type, protocol) → array

Synonym for Socket.pair.

tcp
Socket.tcp(host, port 〈 , local_interface 〈 , local_port 〉 〉) { | socket | . . . } → obj

Socket.tcp(host, port 〈 , local_interface 〈 , local_port 〉 〉) → socket

Create a TCP connection to the given host and port, optionally setting the local interface and 1.9.2

port to use. If given a block, pass it the socket, and close the connection, and return the block’s

value; otherwise return the open socket.

Report erratum

this copy is (1.0 printing, November 2010)

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=23

SOCKET 24

tcp_server_loop Socket.tcp_server_loop(host=nil, port) { | socket, client_addr_info | . . . }

Accepts connections on all the interfaces for the given port (and optionally host). When a con- 1.9.2

nection arrives, call the block, passing in the connected socket and an Addrinfo structure describ-

ing the client. Connections are serialized through the block, so you’ll need add concurrently

yourself (for example, using threading). In reality, this is a bad idea unless you can control the

rate at which clients connect—you’re probably better off using listen and accept directly in these

cases. In all cases, your code is responsible for closing the socket passed to the block.

tcp_server_sockets
Socket.tcp_server_sockets(host=nil, port) → [socket...]

Socket.tcp_server_sockets(host=nil, port) { | sockets | . . . } → obj

Opens a listening socket on each on the interfaces for the host, using the given port or a dynam- 1.9.2

ically assigned port if port is zero. If a block is given, passes the array of sockets to it and

closes them when the block exits; otherwise returns the array of sockets. The list of sockets is

effectively that given by calling

Addrinfo.foreach(host, port, nil, :STREAM, nil, Socket::AI_PASSIVE).map(&:listen)

udp_server_loop Socket.udp_server_loop(host=nil, port) { | msg, source_addr | . . . }

Invokes the block for every message that arrives on the given UDP port, passing in the message 1.9.2

(a string) and the address of the sender (a Socket::UDPSource object).

From the internal documentation...

UDP/IP echo server.

Socket.udp_server_loop(9261) do |msg, msg_src|

msg_src.reply msg

end

udp_server_loop_on Socket.udp_server_loop_on(sockets=nil) { | msg, source_addr | . . . }

Takes an array of sockets (probably created using udp_server_sockets), and invokes the block 1.9.2

repeatedly for each message that arrives on any of them, passing in the message (a string) and

the address of the sender (a Socket::UDPSource object).

udp_server_sockets
Socket.udp_server_sockets(host=nil, port) → [socket...]

Socket.ucp_server_sockets(host=nil, port) { | sockets | . . . } → obj

Opens a UDP socket on each on the interfaces for the host, using the given port or a dynamically 1.9.2

assigned port if port is zero. If a block is given, passes the array of sockets to it and closes them

when the block exits; otherwise returns the array of sockets.

Report erratum

this copy is (1.0 printing, November 2010)

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=24

SOCKET 25

unit
Socket.unit(path) { | socket | . . . } → obj

Socket.unit(path) → socket

Create a domain socket connection on the given path. If given a block, pass it the socket, and 1.9.2

close the connection, and return the block’s value; otherwise return the open socket.

unix_server_loop Socket.tcp_server_loop(path) { | socket, client_addr_info | . . . }

Accepts connections on all the the Unix domain socket identified by path. When a connection 1.9.2

arrives, call the block, passing in the connected socket and an Addrinfo structure describing the

client. Connections are serialized through the block, so you’ll need add concurrently yourself

(for example, using threading). In reality, this is a bad idea unless you can control the rate at

which clients connect—you’re probably better off using listen and accept directly in these cases.

In all cases, your code is responsible for closing the socket passed to the block.

unix_server_socket
Socket.unix_server_socket(path) → socket

Socket.unix_server_socket(path) { | socket | . . . } → obj

Create a domain socket on the given path (first deleting any existing socket if it is owned by 1.9.2

the caller) If a block is given, passes the socket to it and closes and deletes the socket when the

block exits; otherwise returns the socket.

unpack_sockaddr_in Socket.pack_sockaddr_in(string_address) → [port, host]

Given a string containing a binary addrinfo structure, return the port and host.

require 'socket'
addr = Socket.pack_sockaddr_in(80, "pragprog.com")
Socket.unpack_sockaddr_in(addr) # => [80, "209.251.185.98"]

unpack_sockaddr_un Socket.pack_sockaddr_un(string_address) → path

Return the path for an AF_LOCAL socket.

require 'socket'
addr = Addrinfo.unix("/tmp/socket")
Socket.unpack_sockaddr_un(addr) # => "/tmp/socket"

Report erratum

this copy is (1.0 printing, November 2010)

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=25

SOCKET 26

Instance methods

accept sock.accept → [socket, caller_address]

Accepts an incoming connection returning an array containing a new Socket object and an 1.9.2

Addrinfo object containing the address of the caller.

accept_nonblock sock.accept_nonblock → [socket, caller_address]

Puts the listening socket into nonblocking mode and then accepts an incoming connection. 1.9

Throws an exception if no connection is pending. You’ll probably use this in conjunction with

select.

bind sock.bind(addr) → 0

Binds to the given addr, contained in a struct sockaddr string or a Addrinfo object. 1.9.2

connect sock.connect(addr) → 0

Connects to the given addr, contained in a struct sockaddr string or a Addrinfo object. 1.9.2

connect_nonblock sock.connect_nonblock(addr) → 0

Connects to the given addr, contained in a struct sockaddr string or a Addrinfo object. The non- 1.9.2

blocking option O_NONBLOCK is set on the underlying file descriptor.

ipv6-only! sock.ipv6_only!

Set the SO_IPV6_ONLY option on the socket if supported by the underlying operating system. 1.9.2

Equivalent to:

def ipv6only!

if defined? Socket::IPV6_V6ONLY

self.setsockopt(:IPV6, :V6ONLY, 1)

end

end

listen sock.listen(int) → 0

Listens for connections, using the specified int as the backlog.

Report erratum

this copy is (1.0 printing, November 2010)

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=26

SOCKET 27

recvfrom sock.recvfrom(len 〈 , flags 〉) → [data, sender_addr]

Receives up to len bytes from sock. flags is zero or more of the MSG_ options. The first element

of the result is the data received. The second element contains an Addrinfo object containing the 1.9.2

address of the sender.

recvfrom_nonblock sock.recvfrom_nonblock(len 〈 , flags 〉) → [data, sender_addr]

Receives up to len bytes from sock in nonblocking mode. flags is zero or more of the MSG_ 1.9

options. The first element of the result is the data received. The second element contains an 1.9.2

Addrinfo object containing the address of the sender.

sysaccept sock.sysaccept → [socket_fd, address]

Accepts an incoming connection. Returns an array containing the (integer) file descriptor of the

incoming connection and an Addrinfo object containing the address of the caller. 1.9.2

Report erratum

this copy is (1.0 printing, November 2010)

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=27

IPSOCKET 28

Class
IPSocket < BasicSocket

Class IPSocket is a base class for sockets using IP as their transport. TCPSocket and UDPSocket

are children of this class.

Class methods

getaddress IPSocket.getaddress(hostname) → string

Returns the dotted-quad IP address of hostname.

require 'socket'
IPSocket.getaddress('www.ruby-lang.org') # => "221.186.184.68"

Instance methods

addr sock.addr(〈 rlookup 〉) → array

Returns the domain, port, name, and IP address of sock as a four-element array. If the rlookup 1.9.2

parameter is absent, the global do_not_reverse_lookup flag determines if the host address is

returned as an address or a name. If the parameter is present, a value of true or :hostname

causes a name to be returned; false or :numeric causes a number to be returned.

require 'socket'
u = UDPSocket.new

u.bind('localhost', 8765) # => 0

u.addr # => ["AF_INET", 8765, "127.0.0.1", "127.0.0.1"]

u.addr(:numeric) # => ["AF_INET", 8765, "127.0.0.1", "127.0.0.1"]

u.addr(:hostname) # => ["AF_INET", 8765, "localhost", "127.0.0.1"]

BasicSocket.do_not_reverse_lookup = false

u.addr # => ["AF_INET", 8765, "127.0.0.1", "127.0.0.1"]

peeraddr sock.peeraddr(〈 rlocal 〉) → array

Returns the domain, port, name, and IP address of the peer. If the rlookup parameter is absent, 1.9.2

the global do_not_reverse_lookup flag determines if the host address is returned as an address

or a name. If the parameter is present, a value of true or :hostname causes a name to be returned;

false or :numeric causes a number to be returned.

recvfrom sock.recvfrom(len 〈 , flags 〉) → [data, sender]

Receives up to len bytes on the connection. flags is zero or more of the MSG_ options (listed on

page 18). Returns a two-element array. The first element is the received data, and the second is

an array containing information about the peer. On systems such as my Mac OS X box where

the native recvfrom() method does not return peer information for TCP connections, the second

element of the array is nil.

require 'socket'
t = TCPSocket.new('127.0.0.1', 'ftp')
data = t.recvfrom(40)

data # => ["220 127.0.0.1 FTP server (tnftpd 2008092", nil]

t.close # => nil

Report erratum

this copy is (1.0 printing, November 2010)

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=28

TCPSOCKET 29

Class
TCPSocket < IPSocket

require 'socket'
t = TCPSocket.new('localhost', 'ftp')
t.gets # => "220 ::1 FTP server (tnftpd 20080929) ready.\r\n"

t.close # => nil

Class methods

gethostbyname TCPSocket.gethostbyname(hostname) → array

Looks up hostname and returns its canonical name, an array containing any aliases, the address

type (AF_INET), and the dotted-quad IP address.

require 'socket'
TCPSocket.gethostbyname('ns.pragprog.com') # => ["pragprog.com", [], 2,

.. "209.251.185.98"]

new TCPSocket.new(hostname, port) → sock

Opens a TCP connection to hostname on the port.

open TCPSocket.open(hostname, port) → sock

Synonym for TCPSocket.new.

Report erratum

this copy is (1.0 printing, November 2010)

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=29

SOCKSSOCKET 30

Class
SOCKSSocket < TCPSocket

Class SOCKSSocket supports connections based on the SOCKS protocol.

Class methods

new SOCKSSocket.new(hostname, port) → sock

Opens a SOCKS connection to port on hostname.

open SOCKSSocket.open(hostname, port) → sock

Synonym for SOCKSSocket.new.

Instance methods

close sock.close → nil

Closes this SOCKS connection.

Report erratum

this copy is (1.0 printing, November 2010)

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=30

TCPSERVER 31

Class
TCPServer < TCPSocket

A TCPServer accepts incoming TCP connections. Here is a web server that listens on a given

port and returns the time:

require 'socket'
port = (ARGV[0] || 80).to_i

server = TCPServer.new('0.0.0.0', port)

while (session = server.accept)

puts "Request: #{session.gets}"
session.print "HTTP/1.1 200/OK\r\nContent-type: text/html\r\n\r\n"
session.print "<html><body><h1>#{Time.now}</h1></body></html>\r\n"
session.close

end

Class methods

new TCPServer.new(〈 hostname, 〉port) → sock

Creates a new socket on the given interface (identified by hostname and port). If hostname is

omitted, the server will listen on all interfaces on the current host (equivalent to an address of

0.0.0.0).

open TCPServer.open(〈 hostname, 〉port) → sock

Synonym for TCPServer.new.

Instance methods

accept sock.accept → tcp_socket

Waits for a connection on sock and returns a new tcp_socket connected to the caller. See the

example on page ??.

Report erratum

this copy is (1.0 printing, November 2010)

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=31

UDPSOCKET 32

Class
UDPSocket < IPSocket

UDP sockets send and receive datagrams. To receive data, a socket must be bound to a particular

port. You have two choices when sending data: you can connect to a remote UDP socket and

thereafter send datagrams to that port, or you can specify a host and port every time you send a

packet. The following example is a UDP server that prints the message it receives. It is called

by both connectionless and connection-based clients.

require 'socket'

PORT = 4321

server = UDPSocket.open

server.bind(nil, PORT)

server_thread = Thread.start(server) do |server| # run server in a thread

3.times { p server.recvfrom(64) }

end

Ad-hoc client

UDPSocket.open.send("ad hoc", 0, 'localhost', PORT)

Connection based client

sock = UDPSocket.open

sock.connect('localhost', PORT)

sock.send("connection-based", 0)

sock.send("second message", 0)

server_thread.join

produces:

["ad hoc", ["AF_INET", 60665, "127.0.0.1", "127.0.0.1"]]

["connection-based", ["AF_INET", 55041, "127.0.0.1", "127.0.0.1"]]

["second message", ["AF_INET", 55041, "127.0.0.1", "127.0.0.1"]]

Class methods

new UDPSocket.new(family = AF_INET) → sock

Creates a UDP endpoint, optionally specifying an address family.

open UDPSocket.open(family = AF_INET) → sock

Synonym for UDPSocket.new.

Report erratum

this copy is (1.0 printing, November 2010)

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=32

UDPSOCKET 33

Instance methods

bind sock.bind(hostname, port) → 0

Associates the local end of the UDP connection with a given hostname and port. As well

as a host name, the first parameter may be "<broadcast>" or "" (the empty string) to bind to

INADDR_BROADCAST and INADDR_ANY, respectively. Must be used by servers to estab-

lish an accessible endpoint.

connect sock.connect(hostname, port) → 0

Creates a connection to the given hostname and port. Subsequent UDPSocket#send requests that

don’t override the recipient will use this connection. Multiple connect requests may be issued

on sock: the most recent will be used by send. As well as a host name, the first parameter may be

"<broadcast>" or "" (the empty string) to bind to INADDR_BROADCAST and INADDR_ANY,

respectively.

recvfrom sock.recvfrom(len 〈 , flags 〉) → [data, sender]

Receives up to len bytes from sock. flags is zero or more of the MSG_ options (listed on page 18).

The result is a two-element array containing the received data and information on the sender.

See the example on page ??.

recvfrom_nonblock sock.recvfrom_nonblock(len 〈 , flags 〉) → [data, sender]

Receives up to len bytes from sock in nonblocking mode. 1.9

Report erratum

this copy is (1.0 printing, November 2010)

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=33

UNIXSOCKET 34

send
sock.send(string, flags) → int

sock.send(string, flags, hostname, port) → int

The two-parameter form sends string on an existing connection. The four-parameter form sends

string to port on hostname.

Class
UnixSocket < BasicSocket

A UNIXSocket supports interprocess communication using the Unix domain protocol. Although

the underlying protocol supports both datagram and stream connections, the Ruby library pro-

vides only a stream-based connection.

require 'socket'

SOCKET = "/tmp/sample"

sock = UNIXServer.open(SOCKET)

server_thread = Thread.start(sock) do |sock| # run server in a thread

s1 = sock.accept

p s1.recvfrom(124)

end

client = UNIXSocket.open(SOCKET)

client.send("hello", 0)

client.close

server_thread.join

produces:

["hello", ["AF_UNIX", ""]]

Class methods

new UNIXSocket.new(path) → sock

Opens a new domain socket on path, which must be a path name.

open UNIXSocket.open(path) → sock

Synonym for UNIXSocket.new.

Report erratum

this copy is (1.0 printing, November 2010)

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=34

UNIXSOCKET 35

Instance methods

addr sock.addr → array

Returns the address family and path of this socket.

path sock.path → string

Returns the path of this domain socket.

peeraddr sock.peeraddr → array

Returns the address family and path of the server end of the connection.

recvfrom sock.recvfrom(len 〈 , flags 〉) → array

Receives up to len bytes from sock. flags is zero or more of the MSG_ options (listed on page 18).

The first element of the returned array is the received data, and the second contains (minimal)

information on the sender.

Report erratum

this copy is (1.0 printing, November 2010)

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=35

UNIXSERVER 36

Class
UnixServer < UnixSocket

Class UNIXServer provides a simple Unix domain socket server. See UNIXSocket for example

code.

Class methods

new UNIXServer.new(path) → sock

Creates a server on the given path. The corresponding file must not exist at the time of the call.

open UNIXServer.open(path) → sock

Synonym for UNIXServer.new.

Instance methods

accept sock.accept → unix_socket

Waits for a connection on the server socket and returns a new socket object for that connection.

See the example for UNIXSocket on page 34.

Report erratum

this copy is (1.0 printing, November 2010)

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=36

Appendix A

Bibliography

[Ste98] W. Richard Stevens. Unix Network Programming, Volume 1: Networking APIs:

Sockets and Xti. Prentice Hall, Englewood Cliffs, NJ, second edition, 1998.

[TFH08] David Thomas, Chad Fowler, and Andrew Hunt. Programming Ruby: The Prag-

matic Programmers’ Guide. The Pragmatic Programmers, LLC, Raleigh, NC, and

Dallas, TX, third edition, 2008.

More Ruby, More Rails

The RSpec Book
RSpec, Ruby’s leading Behaviour Driven Development tool, helps

you do TDD right by embracing the design and documentation

aspects of TDD. It encourages readable, maintainable suites of

code examples that not only test your code, they document it as

well. The RSpec Book will teach you how to use RSpec, Cucumber,

and other Ruby tools to develop truly agile software that gets you

to market quickly and maintains its value as evolving market trends

drive new requirements.

The RSpec Book: Behaviour Driven Development with RSpec,

Cucumber, and Friends

David Chelimsky, Dave Astels, Zach Dennis, Aslak Hellesøy,

Bryan Helmkamp, Dan North

(450 pages) ISBN: 978-1-9343563-7-1. $42.95

http://pragprog.com/titles/achbd

Agile Web Development with Rails
Rails just keeps on changing. Rails 3 and Ruby 1.9 bring hundreds

of improvements, including new APIs and substantial performance

enhancements. The fourth edition of this award-winning classic has

been reorganized and refocused so it’s more useful than ever before

for developers new to Ruby and Rails. This book isn’t just a

rework, it’s a complete refactoring.

Agile Web Development with Rails: Fourth Edition

Sam Ruby, Dave Thomas, and David Heinemeier Hansson, et al.

(500 pages) ISBN: 978-1-93435-654-8. $43.95

http://pragprog.com/titles/rails4

http://pragprog.com/titles/achbd
http://pragprog.com/titles/rails4

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles continue the well-known Prag-

matic Programmer style and continue to garner awards and rave reviews. As development gets more and more difficult,

the Pragmatic Programmers will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Programming Ruby 1.9

http://pragprog.com/titles/ruby3

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact with our wiki, and benefit from the

experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available for purchase at our store:

pragprog.com/titles/ruby3.

Contact Us
Online Orders: www.pragprog.com/catalog

Customer Service: support@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

Contact us: 1-800-699-PROG (+1 919 847 3884)

http://pragprog.com/titles/ruby3
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/ruby3
www.pragprog.com/catalog

	Contents
	Introduction
	Socket Library
	Bibliography

