
Extracted from:

Seven Databases
in Seven Weeks

A Guide to Modern Databases
and the NoSQL Movement

This PDF file contains pages extracted from Seven Databases in Seven Weeks,
published by the Pragmatic Bookshelf. For more information or to purchase a

paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printer versions; the

content is otherwise identical.

Copyright © 2010 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

Seven Databases
in Seven Weeks

A Guide to Modern Databases
and the NoSQL Movement

Eric Redmond
Jim R. Wilson

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

Apache, Apache HBase, Apache CouchDB, HBase, CouchDB, and the HBase and CouchDB
logos are trademarks of The Apache Software Foundation. Used with permission. No endorse-
ment by The Apache Software Foundation is implied by the use of these marks.

The team that produced this book includes:

Jackie Carter (editor)
Potomac Indexing, LLC (indexer)
Kim Wimpsett (copyeditor)
David J Kelly (typesetter)
Janet Furlow (producer)
Juliet Benda (rights)
Ellie Callahan (support)

Copyright © 2012 Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-93435-692-0
Encoded using the finest acid-free high-entropy binary digits.
Book version: P2.0—August 2012

http://pragprog.com

4.3 Day 2: Working with Big Data

With Day 1’s table creation and manipulation under our belts, it’s time to
start adding some serious data to our wiki table. Today, we’ll script against
the HBase APIs, ultimately streaming Wikipedia content right into our wiki!
Along the way, we’ll pick up some performance tricks for making faster import
jobs. Finally, we’ll poke around in HBase’s internals to see how it partitions
data into regions, achieving both performance and disaster recovery goals.

Importing Data, Invoking Scripts

One common problem people face when trying a new database system is how
to migrate data into it. Handcrafting Put operations with static strings, like
we did in Day 1, is all well and good, but we can do better.

Fortunately, pasting commands into the shell is not the only way to execute
them. When you start the HBase shell from the command line, you can
specify the name of a JRuby script to run. HBase will execute that script as
though it were entered directly into the shell. The syntax looks like this:

${HBASE_HOME}/bin/hbase shell <your_script> [<optional_arguments> ...]

Since we’re interested specifically in “Big Data,” let’s create a script for import-
ing Wikipedia articles into our wiki table. The WikiMedia Foundation—which
oversees Wikipedia, Wictionary, and other projects—periodically publishes
data dumps we can use. These dumps are in the form of enormous XML files.
Here’s an example record from the English Wikipedia:

<page>
<title>Anarchism</title>
<id>12</id>
<revision>

<id>408067712</id>
<timestamp>2011-01-15T19:28:25Z</timestamp>
<contributor>

<username>RepublicanJacobite</username>
<id>5223685</id>

</contributor>
<comment>Undid revision 408057615 by [[Special:Contributions...</comment>
<text xml:space="preserve">{{Redirect|Anarchist|the fictional character|

...
[[bat-smg:Anarkėzmos]]

</text>
</revision>

</page>

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/rwdata
http://forums.pragprog.com/forums/rwdata

Because we were so smart, this contains all the information we’ve already
accounted for in our schema: title (row key), text, timestamp, and author. So,
we ought to be able to write a script to import revisions without too much
trouble.

Streaming XML

First things first. We’ll need to parse the huge XML files in a streaming (SAX)
fashion, so let’s start with that. The basic outline for parsing an XML file in
JRuby, record by record, looks like this:

hbase/basic_xml_parsing.rb
import 'javax.xml.stream.XMLStreamConstants'

factory = javax.xml.stream.XMLInputFactory.newInstance
reader = factory.createXMLStreamReader(java.lang.System.in)

while reader.has_next

type = reader.next

if type == XMLStreamConstants::START_ELEMENT
tag = reader.local_name
do something with tag

elsif type == XMLStreamConstants::CHARACTERS
text = reader.text
do something with text

elsif type == XMLStreamConstants::END_ELEMENT
same as START_ELEMENT

end

end

Breaking this down, there are a few parts worth mentioning. First, we produce
an XMLStreamReader and wire it up to java.lang.System.in, which means it’ll be
reading from standard input.

Next, we set up a while loop, which will continuously pull out tokens from the
XML stream until there are none left. Inside the while loop, we process the
current token. What to do depends on whether the token is the start of an
XML tag, the end of a tag, or the text in between.

Streaming Wikipedia

Now we can combine this basic XML processing framework with our previous
exploration of the HTable and Put interfaces. Here’s the resultant script. Most
of it should look familiar, and we’ll discuss a few novel parts.

6 •

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/rwdata/code/hbase/basic_xml_parsing.rb
http://pragprog.com/titles/rwdata
http://forums.pragprog.com/forums/rwdata

hbase/import_from_wikipedia.rb
require 'time'

import 'org.apache.hadoop.hbase.client.HTable'
import 'org.apache.hadoop.hbase.client.Put'
import 'javax.xml.stream.XMLStreamConstants'

def jbytes(*args)
args.map { |arg| arg.to_s.to_java_bytes }

end

factory = javax.xml.stream.XMLInputFactory.newInstance
reader = factory.createXMLStreamReader(java.lang.System.in)

document = nil①
buffer = nil
count = 0

table = HTable.new(@hbase.configuration, 'wiki')
table.setAutoFlush(false)②

while reader.has_next
type = reader.next

if type == XMLStreamConstants::START_ELEMENT③

case reader.local_name
when 'page' then document = {}
when /title|timestamp|username|comment|text/ then buffer = []
end

elsif type == XMLStreamConstants::CHARACTERS④

buffer << reader.text unless buffer.nil?

elsif type == XMLStreamConstants::END_ELEMENT⑤

case reader.local_name
when /title|timestamp|username|comment|text/

document[reader.local_name] = buffer.join
when 'revision'

key = document['title'].to_java_bytes
ts = (Time.parse document['timestamp']).to_i

p = Put.new(key, ts)
p.add(*jbytes("text", "", document['text']))
p.add(*jbytes("revision", "author", document['username']))
p.add(*jbytes("revision", "comment", document['comment']))
table.put(p)

• Click HERE to purchase this book now. discuss

Day 2: Working with Big Data • 7

http://media.pragprog.com/titles/rwdata/code/hbase/import_from_wikipedia.rb
http://pragprog.com/titles/rwdata
http://forums.pragprog.com/forums/rwdata

count += 1
table.flushCommits() if count % 10 == 0
if count % 500 == 0

puts "#{count} records inserted (#{document['title']})"
end

end
end

end

table.flushCommits()
exit

① The first difference of note is the introduction of a few variables:

• document: Holds the current article and revision data

• buffer: Holds character data for the current field within the document
(text, title, author, and so on)

• count: Keeps track of how many articles we’ve imported so far

② Pay special attention to the use of table.setAutoFlush(false). In HBase, data is
automatically flushed to disk periodically. This is preferred in most
applications. By disabling autoflush in our script, any put operations we
execute will be buffered until we call table.flushCommits(). This allows us to
batch up writes and execute them when it’s convenient for us.

③ Next, let’s look at what happens in parsing. If the start tag is a <page>,
then reset document to an empty hash. Otherwise, if it’s another tag we
care about, reset buffer for storing its text.

④ We handle character data by appending it to the buffer.

⑤ For most closing tags, we just stash the buffered contents into the document.
If the closing tag is a </revision>, however, we create a new Put instance, fill
it with the document’s fields, and submit it to the table. After that, we use
flushCommits() if we haven’t done so in a while and report progress to stan-
dard out (puts).

Compression and Bloom Filters

We’re almost ready to run the script; we just have one more bit of houseclean-
ing to do first. The text column family is going to contain big blobs of text
content; it would benefit from some compression. Let’s enable compression
and fast lookups:

hbase> alter 'wiki', {NAME=>'text', COMPRESSION=>'GZ', BLOOMFILTER=>'ROW'}
0 row(s) in 0.0510 seconds

8 •

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/rwdata
http://forums.pragprog.com/forums/rwdata

HBase supports two compression algorithms: Gzip (GZ) and Lempel-Ziv-
Oberhumer (LZO). The HBase community highly recommends using LZO over
Gzip, pretty much unilaterally, but here we’re using GZ.

The problem with LZO is the implementation’s license. While open source,
it’s not compatible with Apache’s licensing philosophy, so LZO can’t be bundled
with HBase. Detailed instructions are available online for installing and con-
figuring LZO support. If you want high-performance compression, get LZO.

A Bloom filter is a really cool data structure that efficiently answers the
question, “Have I ever seen this thing before?” Originally developed by Burton
Howard Bloom in 1970 for use in spell-checking applications, Bloom filters
have become popular in data storage applications for determining quickly
whether a key exists. If you’re unfamiliar with Bloom filters, they’re explained
briefly in How Do Bloom Filters Work?, on page 10.

HBase supports using Bloom filters to determine whether a particular column
exists for a given row key (BLOOMFILTER=>'ROWCOL') or just whether a given row
key exists at all (BLOOMFILTER=>'ROW'). The number of columns within a column
family and the number of rows are both potentially unbounded. Bloom filters
offer a fast way of determining whether data exists before incurring an
expensive disk read.

Engage!

Now we’re ready to kick off the script. Remember that these files are enormous,
so downloading and unzipping them is pretty much out of the question. So,
what are we going to do?

Fortunately, through the magic of *nix pipes, we can download, extract, and
feed the XML into the script all at once. The command looks like this:

curl <dump_url> | bzcat | \
${HBASE_HOME}/bin/hbase shell import_from_wikipedia.rb

Note that you should replace <dump_url> with the URL of a WikiMedia Founda-
tion dump file of some kind.2 You should use [project]-latest-pages-articles.xml.bz2
for either the English Wikipedia (~6GB)3 or the English Wiktionary (~185MB).4

These files contain all the most recent revisions of pages in the Main namespace.
That is, they omit user pages, discussion pages, and so on.

Plug in the URL and run it! You should see output like this (eventually):

2. http://dumps.wikimedia.org
3. http://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2
4. http://dumps.wikimedia.org/enwiktionary/latest/enwiktionary-latest-pages-articles.xml.bz2

• Click HERE to purchase this book now. discuss

Day 2: Working with Big Data • 9

http://dumps.wikimedia.org
http://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2
http://dumps.wikimedia.org/enwiktionary/latest/enwiktionary-latest-pages-articles.xml.bz2
http://pragprog.com/titles/rwdata
http://forums.pragprog.com/forums/rwdata

How Do Bloom Filters Work?

Without going too deep into implementation details, a Bloom filter manages a stati-
cally sized array of bits initially set to 0. Each time a new blob of data is presented
to the filter, some of the bits are flipped to 1. Determining which bits to flip depends
on generating a hash from the data and turning that hash into a set of bit positions.

Later, to test whether the filter has been presented with a particular blob in the past,
the filter figures out which bits would have to be 1 and checks them. If any are 0,
then the filter can unequivocally say “no.” If all of the bits are 1, then it reports “yes”;
chances are it has been presented with that blob before, but false positives are
increasingly likely as more blobs are entered.

This is the trade-off of using a Bloom filter as opposed to a simple hash. A hash will
never produce a false positive, but the space needed to store that data is unbounded.
Bloom filters use a constant amount of space but will occasionally produce false
positives at a predictable rate based on saturation.

500 records inserted (Ashmore and Cartier Islands)
1000 records inserted (Annealing)
1500 records inserted (Ajanta Caves)

It’ll happily chug along as long as you let it or until it encounters an error,
but you’ll probably want to shut it off after a while. When you’re ready to kill
the script, press CTRL+C. For now, though, let’s leave it running so we can take
a peek under the hood and learn about how HBase achieves its horizontal
scalability.

Introduction to Regions and Monitoring Disk Usage

In HBase, rows are kept in order, sorted by the row key. A region is a chunk
of rows, identified by the starting key (inclusive) and ending key (exclusive).
Regions never overlap, and each is assigned to a specific region server in the
cluster. In our simplistic stand-alone server, there is only one region server,
which will always be responsible for all regions. A fully distributed cluster
would consist of many region servers.

So, let’s take a look at your HBase server’s disk usage, which will give us
insight into how the data is laid out. You can inspect HBase’s disk usage by
opening a command prompt to the hbase.rootdir location you specified earlier
and executing the du command. du is a standard *nix command-line utility
that tells you how much space is used by a directory and its children, recur-
sively. The -h option tells du to report numbers in human-readable form.

Here’s what ours looked like after about 12,000 pages had been inserted and
the import was still running:

10 •

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/rwdata
http://forums.pragprog.com/forums/rwdata

$ du -h
231M ./.logs/localhost.localdomain,38556,1300092965081
231M ./.logs
4.0K ./.META./1028785192/info
12K ./.META./1028785192/.oldlogs
28K ./.META./1028785192
32K ./.META.
12K ./-ROOT-/70236052/info
12K ./-ROOT-/70236052/.oldlogs
36K ./-ROOT-/70236052
40K ./-ROOT-
72M ./wiki/517496fecabb7d16af7573fc37257905/text
1.7M ./wiki/517496fecabb7d16af7573fc37257905/revision
61M ./wiki/517496fecabb7d16af7573fc37257905/.tmp
12K ./wiki/517496fecabb7d16af7573fc37257905/.oldlogs
134M ./wiki/517496fecabb7d16af7573fc37257905
134M ./wiki
4.0K ./.oldlogs
365M .

This output tells us a lot about how much space HBase is using and how it’s
allocated. The lines starting with /wiki describe the space usage for the wiki
table. The long-named subdirectory 517496fecabb7d16af7573fc37257905 represents
an individual region (the only region so far). Under that, the directories /text
and /revision correspond to the text and revision column families, respectively.
Finally, the last line sums up all these values, telling us that HBase is using
365MB of disk space.

One more thing. The first two lines at the top of output, starting with /.logs,
show us the space used by the write-ahead log (WAL) files. HBase uses write-
ahead logging to provide protection against node failures. This is a fairly
typical disaster recovery technique. For instance, write-ahead logging in file
systems is called journaling. In HBase, logs are appended to the WAL before
any edit operations (put and increment) are persisted to disk.

For performance reasons, edits are not necessarily written to disk immediately.
The system does much better when I/O is buffered and written to disk in
chunks. If the region server responsible for the affected region were to crash
during this limbo period, HBase would use the WAL to determine which
operations were successful and take corrective action.

Writing to the WAL is optional and enabled by default. Edit classes like Put
and Increment have a setter method called setWriteToWAL() that can be used to
exclude the operation from being written to the WAL. Generally you’ll want
to keep the default option, but in some instances it might make sense to
change it. For example, if you’re running an import job that you can rerun

• Click HERE to purchase this book now. discuss

Day 2: Working with Big Data • 11

http://pragprog.com/titles/rwdata
http://forums.pragprog.com/forums/rwdata

any time, like our Wikipedia import script, you might want to take the perfor-
mance benefit of disabling WAL writes over the disaster recovery protection.

Regional Interrogation

If you let the script run long enough, you’ll see HBase split the table into
multiple regions. Here’s our du output again, after about 150,000 pages have
been added:

$ du -h
40K ./.logs/localhost.localdomain,55922,1300094776865
44K ./.logs
24K ./.META./1028785192/info
4.0K ./.META./1028785192/recovered.edits
4.0K ./.META./1028785192/.tmp
12K ./.META./1028785192/.oldlogs
56K ./.META./1028785192
60K ./.META.
4.0K ./.corrupt
12K ./-ROOT-/70236052/info
4.0K ./-ROOT-/70236052/recovered.edits
4.0K ./-ROOT-/70236052/.tmp
12K ./-ROOT-/70236052/.oldlogs
44K ./-ROOT-/70236052
48K ./-ROOT-
138M ./wiki/0a25ac7e5d0be211b9e890e83e24e458/text
5.8M ./wiki/0a25ac7e5d0be211b9e890e83e24e458/revision
4.0K ./wiki/0a25ac7e5d0be211b9e890e83e24e458/.tmp
144M ./wiki/0a25ac7e5d0be211b9e890e83e24e458
149M ./wiki/15be59b7dfd6e71af9b828fed280ce8a/text
6.5M ./wiki/15be59b7dfd6e71af9b828fed280ce8a/revision
4.0K ./wiki/15be59b7dfd6e71af9b828fed280ce8a/.tmp
155M ./wiki/15be59b7dfd6e71af9b828fed280ce8a
145M ./wiki/0ef3903982fd9478e09d8f17b7a5f987/text
6.3M ./wiki/0ef3903982fd9478e09d8f17b7a5f987/revision
4.0K ./wiki/0ef3903982fd9478e09d8f17b7a5f987/.tmp
151M ./wiki/0ef3903982fd9478e09d8f17b7a5f987
135M ./wiki/a79c0f6896c005711cf6a4448775a33b/text
6.0M ./wiki/a79c0f6896c005711cf6a4448775a33b/revision
4.0K ./wiki/a79c0f6896c005711cf6a4448775a33b/.tmp
141M ./wiki/a79c0f6896c005711cf6a4448775a33b
591M ./wiki
4.0K ./.oldlogs
591M .

The biggest change is that the old region (517496fecabb7d16af7573fc37257905) is
now gone, replaced by four new ones. In our stand-alone server, all the regions
are served by our singular server, but in a distributed environment, these
would be parceled out to the various region servers.

12 •

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/rwdata
http://forums.pragprog.com/forums/rwdata

This raises a few questions, such as “How do the region servers know which
regions they’re responsible for serving?” and “How can you find which region
(and, by extension, which region server) is serving a given row?”

If we drop back into the HBase shell, we can query the .META. table to find out
more about the current regions. .META. is a special table whose sole purpose
is to keep track of all the user tables and which region servers are responsible
for serving the regions of those tables.

hbase> scan '.META.', { COLUMNS => ['info:server', 'info:regioninfo'] }

Even for a small number of regions, you should get a lot of output. Here’s a
fragment of ours, formatted and truncated for readability:

ROW
wiki,,1300099733696.a79c0f6896c005711cf6a4448775a33b.

COLUMN+CELL
column=info:server, timestamp=1300333136393, value=localhost.localdomain:3555
column=info:regioninfo, timestamp=1300099734090, value=REGION => {

NAME => 'wiki,,1300099733696.a79c0f6896c005711cf6a4448775a33b.',
STARTKEY => '',
ENDKEY => 'Demographics of Macedonia',
ENCODED => a79c0f6896c005711cf6a4448775a33b,
TABLE => {{...}}

ROW
wiki,Demographics of Macedonia,1300099733696.0a25ac7e5d0be211b9e890e83e24e458.

COLUMN+CELL
column=info:server, timestamp=1300333136402, value=localhost.localdomain:35552
column=info:regioninfo, timestamp=1300099734011, value=REGION => {

NAME => 'wiki,Demographics of Macedonia,1300099733696.0a25...e458.',
STARTKEY => 'Demographics of Macedonia',
ENDKEY => 'June 30',
ENCODED => 0a25ac7e5d0be211b9e890e83e24e458,
TABLE => {{...}}

Both of the regions listed previously are served by the same server, localhost.local-
domain:35552. The first region starts at the empty string row ('') and ends with
'Demographics of Macedonia'. The second region starts at 'Demographics of Macedonia'
and goes to 'June 30'.

STARTKEY is inclusive, while ENDKEY is exclusive. So, if we were looking for the
'Demographics of Macedonia' row, we’d find it in the second region.

Since rows are kept in sorted order, we can use the information stored in
.META. to look up the region and server where any given row should be found.
But where is the .META. table stored?

• Click HERE to purchase this book now. discuss

Day 2: Working with Big Data • 13

http://pragprog.com/titles/rwdata
http://forums.pragprog.com/forums/rwdata

It turns out that the .META. table is split into regions and served by region
servers just like any other table would be. To find out which servers have
which parts of the .META. table, we have to scan -ROOT-.

hbase> scan '-ROOT-', { COLUMNS => ['info:server', 'info:regioninfo'] }

ROW
.META.,,1

COLUMN+CELL
column=info:server, timestamp=1300333135782, value=localhost.localdomain:35552
column=info:regioninfo, timestamp=1300092965825, value=REGION => {

NAME => '.META.,,1',
STARTKEY => '',
ENDKEY => '',
ENCODED => 1028785192,
TABLE => {{...}}

The assignment of regions to region servers, including .META. regions, is handled
by the master node, often referred to as HBaseMaster. The master server can
also be a region server, performing both duties simultaneously.

When a region server fails, the master server steps in and reassigns respon-
sibility for regions previously assigned to the failed node. The new stewards
of those regions would look to the WAL to see what, if any, recovery steps are
needed. If the master server fails, responsibility defers to any of the other
region servers that step up to become the master.

14 •

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/rwdata
http://forums.pragprog.com/forums/rwdata

Where’s My TABLE Schema?

The TABLE schema has been removed from the example output of regioninfo scans. This
reduces clutter, and we’ll be talking about performance-tuning options later. If you’re
dying to see the schema definition for a table, use the describe command. Here’s an
example:

hbase> describe 'wiki'
hbase> describe '.META.'
hbase> describe '-ROOT-'

• Click HERE to purchase this book now. discuss

Day 2: Working with Big Data • 15

http://pragprog.com/titles/rwdata
http://forums.pragprog.com/forums/rwdata

