
Extracted from:

Seven Databases
in Seven Weeks

A Guide to Modern Databases
and the NoSQL Movement

This PDF file contains pages extracted from Seven Databases in Seven Weeks,
published by the Pragmatic Bookshelf. For more information or to purchase a

paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printer versions; the

content is otherwise identical.

Copyright © 2010 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

Seven Databases
in Seven Weeks

A Guide to Modern Databases
and the NoSQL Movement

Eric Redmond
Jim R. Wilson

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

Apache, Apache HBase, Apache CouchDB, HBase, CouchDB, and the HBase and CouchDB
logos are trademarks of The Apache Software Foundation. Used with permission. No endorse-
ment by The Apache Software Foundation is implied by the use of these marks.

The team that produced this book includes:

Jackie Carter (editor)
Potomac Indexing, LLC (indexer)
Kim Wimpsett (copyeditor)
David J Kelly (typesetter)
Janet Furlow (producer)
Juliet Benda (rights)
Ellie Callahan (support)

Copyright © 2012 Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-93435-692-0
Encoded using the finest acid-free high-entropy binary digits.
Book version: P2.0—August 2012

http://pragprog.com

CHAPTER 1

Introduction
This is a pivotal time in the database world. For years the relational model
has been the de facto option for problems big and small. We don’t expect
relational databases will fade away anytime soon, but people are emerging
from the RDBMS fog to discover alternative options, such as schemaless or
alternative data structures, simple replication, high availability, horizontal
scaling, and new query methods. These options are collectively known as
NoSQL and make up the bulk of this book.

In this book, we explore seven databases across the spectrum of database
styles. In the process of reading the book, you will learn the various function-
ality and trade-offs each database has—durability vs. speed, absolute vs.
eventual consistency, and so on—and how to make the best decisions for
your use cases.

1.1 It Starts with a Question

The central question of Seven Databases in Seven Weeks is this: what database
or combination of databases best resolves your problem? If you walk away
understanding how to make that choice, given your particular needs and
resources at hand, we’re happy.

But to answer that question, you’ll need to understand your options. For that,
we’ll take you on a deep dive into each of seven databases, uncovering the
good parts and pointing out the not so good. You’ll get your hands dirty with
CRUD, flex your schema muscles, and find answers to these questions:

• What type of datastore is this? Databases come in a variety of genres,
such as relational, key-value, columnar, document-oriented, and graph.
Popular databases—including those covered in this book—can generally
be grouped into one of these broad categories. You’ll learn about each

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/rwdata
http://forums.pragprog.com/forums/rwdata

type and the kinds of problems for which they’re best suited. We’ve
specifically chosen databases to span these categories including one
relational database (Postgres), two key-value stores (Riak, Redis), a col-
umn-oriented database (HBase), two document-oriented databases
(MongoDB, CouchDB), and a graph database (Neo4J).

• What was the driving force? Databases are not created in a vacuum. They
are designed to solve problems presented by real use cases. RDBMS
databases arose in a world where query flexibility was more important
than flexible schemas. On the other hand, column-oriented datastores
were built to be well suited for storing large amounts of data across sev-
eral machines, while data relationships took a backseat. We’ll cover cases
in which to use each database and related examples.

• How do you talk to it? Databases often support a variety of connection
options. Whenever a database has an interactive command-line interface,
we’ll start with that before moving on to other means. Where programming
is needed, we’ve stuck mostly to Ruby and JavaScript, though a few other
languages sneak in from time to time—like PL/pgSQL (Postgres) and
Gremlin (Neo4J). At a lower level, we’ll discuss protocols like REST
(CouchDB, Riak) and Thrift (HBase). In the final chapter, we present a
more complex database setup tied together by a Node.js JavaScript
implementation.

• What makes it unique? Any datastore will support writing data and reading
it back out again. What else it does varies greatly from one to the next.
Some allow querying on arbitrary fields. Some provide indexing for rapid
lookup. Some support ad hoc queries; for others, queries must be planned.
Is schema a rigid framework enforced by the database or merely a set of
guidelines to be renegotiated at will? Understanding capabilities and
constraints will help you pick the right database for the job.

• How does it perform? How does this database function and at what cost?
Does it support sharding? How about replication? Does it distribute data
evenly using consistent hashing, or does it keep like data together? Is
this database tuned for reading, writing, or some other operation? How
much control do you have over its tuning, if any?

• How does it scale? Scalability is related to performance. Talking about
scalability without the context of what you want to scale to is generally
fruitless. This book will give you the background you need to ask the right
questions to establish that context. While the discussion on how to scale
each database will be intentionally light, in these pages you’ll find out

2 • Chapter 1. Introduction

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/rwdata
http://forums.pragprog.com/forums/rwdata

whether each datastore is geared more for horizontal scaling (MongoDB,
HBase, Riak), traditional vertical scaling (Postgres, Neo4J, Redis), or
something in between.

Our goal is not to guide a novice to mastery of any of these databases. A full
treatment of any one of them could (and does) fill entire books. But by the
end you should have a firm grasp of the strengths of each, as well as how
they differ.

1.2 The Genres

Like music, databases can be broadly classified into one or more styles. An
individual song may share all of the same notes with other songs, but some
are more appropriate for certain uses. Not many people blast Bach’s Mass in
B Minor out an open convertible speeding down the 405. Similarly, some
databases are better for some situations over others. The question you must
always ask yourself is not “Can I use this database to store and refine this
data?” but rather, “Should I?”

In this section, we’re going to explore five main database genres. We’ll also
take a look at the databases we’re going to focus on for each genre.

It’s important to remember that most of the data problems you’ll face could
be solved by most or all of the databases in this book, not to mention other
databases. The question is less about whether a given database style could
be shoehorned to model your data and more about whether it’s the best fit
for your problem space, your usage patterns, and your available resources.
You’ll learn the art of divining whether a database is intrinsically useful to
you.

Relational

The relational model is generally what comes to mind for most people with
database experience. Relational database management systems (RDBMSs)
are set-theory-based systems implemented as two-dimensional tables with
rows and columns. The canonical means of interacting with an RDBMS is by
writing queries in Structured Query Language (SQL). Data values are typed
and may be numeric, strings, dates, uninterpreted blobs, or other types. The
types are enforced by the system. Importantly, tables can join and morph
into new, more complex tables, because of their mathematical basis in rela-
tional (set) theory.

• Click HERE to purchase this book now. discuss

The Genres • 3

http://pragprog.com/titles/rwdata
http://forums.pragprog.com/forums/rwdata

There are lots of open source relational databases to choose from, including
MySQL, H2, HSQLDB, SQLite, and many others. The one we cover is in
Chapter 2, PostgreSQL, on page ?.

PostgreSQL

Battle-hardened PostgreSQL is by far the oldest and most robust database
we cover. With its adherence to the SQL standard, it will feel familiar to anyone
who has worked with relational databases before, and it provides a solid point
of comparison to the other databases we’ll work with. We’ll also explore some
of SQL’s unsung features and Postgres’s specific advantages. There’s some-
thing for everyone here, from SQL novice to expert.

Key-Value

The key-value (KV) store is the simplest model we cover. As the name implies,
a KV store pairs keys to values in much the same way that a map (or
hashtable) would in any popular programming language. Some KV implemen-
tations permit complex value types such as hashes or lists, but this is not
required. Some KV implementations provide a means of iterating through the
keys, but this again is an added bonus. A filesystem could be considered a
key-value store, if you think of the file path as the key and the file contents
as the value. Because the KV moniker demands so little, databases of this
type can be incredibly performant in a number of scenarios but generally
won’t be helpful when you have complex query and aggregation needs.

As with relational databases, many open source options are available. Some
of the more popular offerings include memcached (and its cousins mem-
cachedb and membase), Voldemort, and the two we cover in this book: Redis
and Riak.

Riak

More than a key-value store, Riak—covered in Chapter 3, Riak, on page ?—
embraces web constructs like HTTP and REST from the ground up. It’s a
faithful implementation of Amazon’s Dynamo, with advanced features such
as vector clocks for conflict resolution. Values in Riak can be anything, from
plain text to XML to image data, and relationships between keys are handled
by named structures called links. One of the lesser known databases in this
book, Riak, is rising in popularity, and it’s the first one we’ll talk about that
supports advanced querying via mapreduce.

4 • Chapter 1. Introduction

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/rwdata
http://forums.pragprog.com/forums/rwdata

Redis

Redis provides for complex datatypes like sorted sets and hashes, as well as
basic message patterns like publish-subscribe and blocking queues. It also
has one of the most robust query mechanisms for a KV store. And by caching
writes in memory before committing to disk, Redis gains amazing performance
in exchange for increased risk of data loss in the case of a hardware failure.
This characteristic makes it a good fit for caching noncritical data and for
acting as a message broker. We leave it until the end—see Chapter 8, Redis,
on page ?—so we can build a multidatabase application with Redis and
others working together in harmony.

Columnar

Columnar, or column-oriented, databases are so named because the important
aspect of their design is that data from a given column (in the two-dimensional
table sense) is stored together. By contrast, a row-oriented database (like an
RDBMS) keeps information about a row together. The difference may seem
inconsequential, but the impact of this design decision runs deep. In column-
oriented databases, adding columns is quite inexpensive and is done on a
row-by-row basis. Each row can have a different set of columns, or none at
all, allowing tables to remain sparse without incurring a storage cost for null
values. With respect to structure, columnar is about midway between rela-
tional and key-value.

In the columnar database market, there’s somewhat less competition than
in relational databases or key-value stores. The three most popular are HBase
(which we cover in Chapter 4, HBase, on page ?), Cassandra, and Hypertable.

HBase

This column-oriented database shares the most similarities with the relational
model of all the nonrelational databases we cover. Using Google’s BigTable
paper as a blueprint, HBase is built on Hadoop (a mapreduce engine) and
designed for scaling horizontally on clusters of commodity hardware. HBase
makes strong consistency guarantees and features tables with rows and
columns—which should make SQL fans feel right at home. Out-of-the-box
support for versioning and compression sets this database apart in the “Big
Data” space.

Document

Document-oriented databases store, well, documents. In short, a document
is like a hash, with a unique ID field and values that may be any of a variety
of types, including more hashes. Documents can contain nested structures,

• Click HERE to purchase this book now. discuss

The Genres • 5

http://pragprog.com/titles/rwdata
http://forums.pragprog.com/forums/rwdata

and so they exhibit a high degree of flexibility, allowing for variable domains.
The system imposes few restrictions on incoming data, as long as it meets
the basic requirement of being expressible as a document. Different document
databases take different approaches with respect to indexing, ad hoc querying,
replication, consistency, and other design decisions. Choosing wisely between
them requires understanding these differences and how they impact your
particular use cases.

The two major open source players in the document database market are
MongoDB, which we cover in Chapter 5, MongoDB, on page ?, and CouchDB,
covered in Chapter 6, CouchDB, on page ?.

MongoDB

MongoDB is designed to be huge (the name mongo is extracted from the word
humongous). Mongo server configurations attempt to remain consistent—if
you write something, subsequent reads will receive the same value (until the
next update). This feature makes it attractive to those coming from an RDBMS
background. It also offers atomic read-write operations such as incrementing
a value and deep querying of nested document structures. Using JavaScript
for its query language, MongoDB supports both simple queries and complex
mapreduce jobs.

CouchDB

CouchDB targets a wide variety of deployment scenarios, from the datacenter
to the desktop, on down to the smartphone. Written in Erlang, CouchDB has
a distinct ruggedness largely lacking in other databases. With nearly incor-
ruptible data files, CouchDB remains highly available even in the face of
intermittent connectivity loss or hardware failure. Like Mongo, CouchDB’s
native query language is JavaScript. Views consist of mapreduce functions,
which are stored as documents and replicated between nodes like any other
data.

Graph

One of the less commonly used database styles, graph databases excel at
dealing with highly interconnected data. A graph database consists of nodes
and relationships between nodes. Both nodes and relationships can have
properties—key-value pairs—that store data. The real strength of graph
databases is traversing through the nodes by following relationships.

In Chapter 7, Neo4J, on page ?, we discuss the most popular graph database
today, Neo4J.

6 • Chapter 1. Introduction

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/rwdata
http://forums.pragprog.com/forums/rwdata

Neo4J

One operation where other databases often fall flat is crawling through self-
referential or otherwise intricately linked data. This is exactly where Neo4J
shines. The benefit of using a graph database is the ability to quickly traverse
nodes and relationships to find relevant data. Often found in social networking
applications, graph databases are gaining traction for their flexibility, with
Neo4j as a pinnacle implementation.

Polyglot

In the wild, databases are often used alongside other databases. It’s still
common to find a lone relational database, but over time it is becoming pop-
ular to use several databases together, leveraging their strengths to create
an ecosystem that is more powerful, capable, and robust than the sum of its
parts. This practice is known as polyglot persistence and is a topic we consider
further in Chapter 9, Wrapping Up, on page ?.

1.3 Onward and Upward

We’re in the midst of a Cambrian explosion of data storage options; it’s hard
to predict exactly what will evolve next. We can be fairly certain, though, that
the pure domination of any particular strategy (relational or otherwise) is
unlikely. Instead, we’ll see increasingly specialized databases, each suited to
a particular (but certainly overlapping) set of ideal problem spaces. And just
as there are jobs today that call for expertise specifically in administrating
relational databases (DBAs), we are going to see the rise of their nonrelational
counterparts.

Databases, like programming languages and libraries, are another set of tools
that every developer should know. Every good carpenter must understand
what’s in their toolbelt. And like any good builder, you can never hope to be
a master without a familiarity of the many options at your disposal.

Consider this a crash course in the workshop. In this book, you’ll swing some
hammers, spin some power drills, play with some nail guns, and in the end
be able to build so much more than a birdhouse. So, without further ado,
let’s wield our first database: PostgreSQL.

• Click HERE to purchase this book now. discuss

Onward and Upward • 7

http://pragprog.com/titles/rwdata
http://forums.pragprog.com/forums/rwdata

