Extracted from:

Seven Databases
in Seven Weeks

A Guide to Modern Databases
and the NoSQL Movement

This PDF file contains pages extracted from Seven Databases in Seven Weeks,
published by the Pragmatic Bookshelf. For more information or to purchase a
paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printer versions; the

content is otherwise identical.

Copyright © 2010 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

The Pragmatic Bookshelf

Dallas, Texas - Raleigh, North Carolina


http://www.pragprog.com

Th
Pr ematic
ograrminers

Seven Databases
in Seven Weeks

A Guide to Modern Databases
and the NoSQL Movement

Eric Redmond

and Jim R. Wilson
Edited by Jacquelyn Carter



Seven Databases
in Seven Weeks

A Guide to Modern Databases
and the NoSQL Movement

Eric Redmond
Jim R. Wilson

The Pragmatic Bookshelf

Dallas, Texas - Raleigh, North Carolina



Pr matic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-

marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

Apache, Apache HBase, Apache CouchDB, HBase, CouchDB, and the HBase and CouchDB
logos are trademarks of The Apache Software Foundation. Used with permission. No endorse-
ment by The Apache Software Foundation is implied by the use of these marks.

The team that produced this book includes:

Jackie Carter (editor)

Potomac Indexing, LLC (indexer)
Kim Wimpsett (copyeditor)
David J Kelly (typesetter)

Janet Furlow (producer)

Juliet Benda (rights)

Ellie Callahan (support)

Copyright © 2012 Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-13: 978-1-93435-692-0

Encoded using the finest acid-free high-entropy binary digits.

Book version: P2.0—August 2012


http://pragprog.com

PUT the Value in the Bucket

Riak is a key-value store, so it expects you to pass in a key to retrieve a value.
Riak breaks up classes of keys into buckets to avoid key collisions—for
example, a key for java the language will not collide with java the drink.

We're going to create a system to keep track of animals in a dog hotel. We’ll
start by creating a bucket of animals that contain each furry guest’s details.
The URL follows this pattern:

http://SERVER:PORT/riak/BUCKET/KEY

A straightforward way of populating a Riak bucket is to know your key in
advance. We'll first add Ace, The Wonder Dog and give him the key ace with
the value {"nickname" : "The Wonder Dog", "breed" : "German Shepherd"}. You don’t need
to explicitly create a bucket—putting a first value into a bucket name will
create that bucket.

$ curl -v -X PUT http://localhost:8091/riak/animals/ace \
-H "Content-Type: application/json" \
-d '{"nickname" : "The Wonder Dog", "breed" : "German Shepherd"}'

Putting a new value returns a 204 code. The -v (verbose) attribute in the curl
command outputs this header line.

< HTTP/1.1 204 No Content

We can view our list of buckets that have been created.

$ curl -X GET http://localhost:8091/riak?buckets=true
{"buckets":["favs","animals"]}

Optionally, you can return the set results with the ?returnbody=true parameter,
which we’ll test by adding another animal, Polly:

$ curl -v -X PUT http://localhost:8091/riak/animals/polly?returnbody=true \
-H "Content-Type: application/json" \
-d '{"nickname" : "Sweet Polly Purebred", "breed" : "Purebred"}'

This time you’ll see a 200 code.
< HTTP/1.1 200 OK

If we aren’t picky about our key name, Riak will generate one when using
POST.

$ curl -i -X POST http://localhost:8091/riak/animals \
-H "Content-Type: application/json" \
-d '{"nickname" : "Sergeant Stubby", "breed" : "Terrier"}'

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/rwdata
http://forums.pragprog.com/forums/rwdata

6

The generated key will be in the header under Location—also note the 201
success code in the header.

HTTP/1.1 201 Created

Vary: Accept-Encoding

Server: MochiWeb/1.1 WebMachine/1.7.3 (participate in the frantic)
Location: /riak/animals/6VZc207zKxq2B34kJrm1S@ma3P0

Date: Tue, 05 Apr 2011 07:45:33 GMT

Content-Type: application/json

Content-Length: 0

A GET request (cURL’s default if left unspecified) to that location will retrieve
the value.

$ curl http://localhost:8091/riak/animals/6VZc207zKxq2B34kJrm1S0ma3P0

DELETE will remove it.

$ curl -i -X DELETE http://localhost:8091/riak/animals/6VZc207zKxq2B34kJrm1S0ma3P0
HTTP/1.1 204 No Content

Vary: Accept-Encoding

Server: MochiWeb/1.1 WebMachine/1.7.3 (participate in the frantic)

Date: Mon, 11 Apr 2011 05:08:39 GMT

Content-Type: application/x-www-form-urlencoded

Content-Length: 0

DELETE won't return any body, but the HTTP code will be 204 if successful.
Otherwise, as you’d expect, it returns a 404.

If we've forgotten any of our keys in a bucket, we can get them all with keys=true.
$ curl http://localhost:8091/riak/animals?keys=true

You can also get them as a stream with keys=stream, which can be a safer
choice for huge datasets—it just keeps sending chunks of keys array objects
and ends with an empty array.

Links

Links are metadata that associate one key to other keys. The basic structure
is this:

Link: </riak/bucket/key>; riaktag=\"whatever\"

The key to where this value links is in pointy brackets (<...>), followed by a
semicolon and then a tag describing how the link relates to this value (it can
be whatever string we like).

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/rwdata
http://forums.pragprog.com/forums/rwdata

Link Walking

Our little dog hotel has quite a few (large, comfortable, and humane) cages.
To keep track of which animal is in what cage, we’ll use a link. Cage 1 contains
Polly by linking to her key (this also creates a new bucket named cages). The
cage is installed in room 101, so we set that value as JSON data.

$ curl -X PUT http://localhost:8091/riak/cages/1 \
-H "Content-Type: application/json" \
-H "Link: </riak/animals/polly>; riaktag=\"contains\"" \
-d '{"room" : 101}’

Note that this link relationship is one-directional. In effect, the cage we've
just created knows that Polly is inside it, but no changes have been made to
Polly. We can confirm this by pulling up Polly’s data and checking that there
have been no changes to the Link headers.

$ curl -i http://localhost:8091/riak/animals/polly

HTTP/1.1 200 OK

X-Riak-Vclock: a85hYGBgzGDKBVIcypz/fvrde/U5gymRMY+VwZw35gRfFgA=
Vary: Accept-Encoding

Server: MochiWeb/1.1 WebMachine/1.9.0 (participate in the frantic)
Link: </riak/animals>; rel="up"

Last-Modified: Tue, 13 Dec 2011 17:53:59 GMT

ETag: "VDOZAfOTsIHsgG5PM3YzZw"

Date: Tue, 13 Dec 2011 17:54:51 GMT

Content-Type: application/json

Content-Length: 59

{"nickname" : "Sweet Polly Purebred", "breed" : "Purebred"}

You can have as many metadata Links as necessary, separated by commas.
We'll put Ace in cage 2 and also point to cage 1 tagged with next_to so we
know that it’s nearby.

$ curl -X PUT http://localhost:8091/riak/cages/2 \

-H "Content-Type: application/json" \

-H "Link:</riak/animals/ace>;riaktag=\"contains\",
</riak/cages/1>;riaktag=\"next to\"" \

-d '"{"room" : 101}’

What makes Links special in Riak is link walking (and a more powerful variant,
linked mapreduce queries, which we investigate tomorrow). Getting the linked
data is achieved by appending a link spec to the URL that is structured like
this: /,_,_. The underscores () in the URL represent wildcards to each of the
link criteria: bucket, tag, keep. We’'ll explain those terms shortly. First let’'s
retrieve all links from cage 1.

$ curl http://localhost:8091/riak/cages/1/_,_,_

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/rwdata
http://forums.pragprog.com/forums/rwdata

8e

- -4PYi9DW81iJK5aCvQQrrP7mh7jZs
Content-Type: multipart/mixed; boundary=AvlfawIA4WjypRl1z5gHJtrRqklD

--AvlfawIA4WjypRlz5gHItrRgk1lD

X-Riak-Vclock: a85hYGBgzGDKBVIcypz/fvrde/U5gymRMY+VwZw35gRfFgA=
Location: /riak/animals/polly

Content-Type: application/json

Link: </riak/animals>; rel="up"

Etag: VDOZAfOTsIHsgG5PM3YZW

Last-Modified: Tue, 13 Dec 2011 17:53:59 GMT

{"nickname" : "Sweet Polly Purebred", "breed" : "Purebred"}
--AvlfawIA4WjypR1z5gHItrRgklD- -

--4PYi9DW81iJK5aCvQQrrP7mh7jZs- -

It returns a multipart/mixed dump of headers plus bodies of all linked keys/val-
ues. It’s also a headache to look at. Tomorrow we’ll find a more powerful way
to get link-walked data that also happens to return nicer values—but today
we’ll dig a bit more into this syntax.

If you're not familiar with reading the multipart/mixed MIME type, the Content-Type
definition describes a boundary string, which denotes the beginning and end
of some HTTP header and body data.

- -Bc0dSWMLuhkisryp0GidDLgeA64
some HTTP header and body data
- -BcOdSWMLuhkisryp0GidDLgeA64 - -

In our case, the data is what cage 1 links to: Polly Purebred. You may have
noticed that the headers returned don’t actually display the link information.
This is OK; that data is still stored under the linked-to key.

When link walking, we can replace the underscores in the link spec to filter
only values we want. Cage 2 has two links, so performing a link spec request
will return both the animal Ace contained in the cage and the cage 1 next to
it. To specify only following the animals bucket, replace the first underscore
with the bucket name.

$ curl http://localhost:8091/riak/cages/2/animals, _,_
Or follow the cages next to this one by populating the tag criteria.
$ curl http://localhost:8091/riak/cages/2/_,next_to,_

The final underscore—keep—accepts a 1 or 0. keep is useful when following
second-order links, or links following other links, which you can do by just
appending another link spec. Let’s follow the keys next_to cage 2, which will
return cage 1. Next, we walk to the animals linked to cage 1. Since we set

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/rwdata
http://forums.pragprog.com/forums/rwdata

*9

keep to O, Riak will not return the intermediate step (the cage 1 data). It will
return only Polly’s information, who is next to Ace’s cage.

$ curl http://localhost:8091/riak/cages/2/_,next_to,0/animals, ,_

- -6mBdsboQ8kTT6MLUHgOrgvbLhzd
Content-Type: multipart/mixed; boundary=EZYdVz90x4xzR4jx1I2ugUFFiZh

--EZYdVz90x4xzR4jx1I2ugUFFizZh

X-Riak-Vclock: a85hYGBgzGDKBVIcypz/fvrde/U5gymRMY+VwZw35gRfFgA=
Location: /riak/animals/polly

Content-Type: application/json

Link: </riak/animals>; rel="up"

Etag: VDOZAfOTsIHsgG5PM3YzZW

Last-Modified: Tue, 13 Dec 2011 17:53:59 GMT

{"nickname" : "Sweet Polly Purebred", "breed" : "Purebred"}
--EZYdVz90x4xzR4jx1I2ugUFFiZh- -

- -6mBdsboQ8kTT6MLUHgOrgvbLhzd- -
If we want Polly’s information and cage 1, set keep to 1.
$ curl http://localhost:8091/riak/cages/2/_,next_to,1/_, ,_

--PDVOE17Rh1AP90jGln1lmhz7x8r9
Content-Type: multipart/mixed; boundary=Y1iPQ9LPNEoAnDeAMiRkAjCbmed

--Y1iPQ9LPNEoANnDeAMiRkAjCbmed

X-Riak-Vclock: a85hYGBgzGDKBVIcypz/fvrde/U5gymRKY+VIYo35gRfFgA=
Location: /riak/cages/1

Content-Type: application/json

Link: </riak/animals/polly>; riaktag="contains", </riak/cages>; rel="up"
Etag: 6LYhRnMRrGIgsTmpE55PaU

Last-Modified: Tue, 13 Dec 2011 17:54:34 GMT

{"room" : 101}
--YLiPQ9LPNEoAnDeAMiRkAjCbmed- -

--PDVOE17Rh1AP90jGlnlmhz7x8r9
Content-Type: multipart/mixed; boundary=GS9J6KQLsI8zzMxJluDITfwiUKA

--GS9J6KQLsI8zzMxJLuDITfwiUKA

X-Riak-Vclock: a85hYGBgzGDKBVIcypz/fvrde/U5gymRMY+VwZw35gRfFgA=
Location: /riak/animals/polly

Content-Type: application/json

Link: </riak/animals>; rel="up"

Etag: VDOZAfOTsIHsgG5PM3YZW

Last-Modified: Tue, 13 Dec 2011 17:53:59 GMT

{"nickname" : "Sweet Polly Purebred", "breed" : "Purebred"}

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/rwdata
http://forums.pragprog.com/forums/rwdata

10 ¢

--GS9J6KQLsI8zzMxJluDITfwiUKA- -
- -PDVOE17Rh1AP90jGln1lmhz7x8r9- -

This returns the objects in the path to the final result. In other words, keep
the step.

Beyond Links

Along with Links, you can store arbitrary metadata by using the X-Riak-Meta-
header prefix. If we wanted to keep track of the color of a cage but it wasn’t
necessarily important in the day-to-day cage-managing tasks at hand, we
could mark cage 1 as having the color pink. Getting the URL’s header (the -I
flag) will return your metadata name and value.

$ curl -X PUT http://localhost:8091/riak/cages/1 \
-H "Content-Type: application/json" \
-H "X-Riak-Meta-Color: Pink" \
-H "Link: </riak/animals/polly>; riaktag=\"contains\"" \
-d '{"room" : 101}’

MIME Types in Riak

Riak stores everything as a binary-encoded value, just like normal HTTP. The
MIME type gives the binary data context—we’ve been dealing only with plain
text up until now. MIME types are stored on the Riak server but are really
just a flag to the client so that when it downloads the binary data, it knows
how to render it.

We'd like our dog hotel to keep images of our guests. We need only use the
data-binary flag on the curl command to upload an image to the server and
specify the MIME type as image/jpeg. We'll add a link back to the /animals/polly
key so we know who we are looking at.

First, create an image called polly_image.jpg and place it in the same directory
you've been using to issue the curl commands.

$ curl -X PUT http://localhost:8091/riak/photos/polly.jpg \
-H "Content-type: image/jpeg" \
-H "Link: </riak/animals/polly>; riaktag=\"photo\"" \
--data-binary @polly_image.jpg

Now visit the URL in a web browser, which will be delivered and rendered
exactly as you'd expect any web client-server request to function.

http://localhost:8091/riak/photos/polly.jpg

Since we pointed the image to /animals/polly, we could link walk from the image
key to Polly but not vice versa. Unlike a relational database, there is no “has

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/rwdata
http://forums.pragprog.com/forums/rwdata

« 1

a” or “is a” rule concerning links. You link the direction you need to walk. If
we believe our use case will require accessing image data from the animals
bucket, a link should exist on that object instead (or in addition).

Day 1 Wrap-Up

We hope you're seeing a glimmer of Riak’s potential as a flexible storage option.
So far, we've covered only standard key-value practice with some links thrown
in. When designing a Riak schema, think somewhere in between a caching
system and PostgreSQL. You will break up your data into different logical
classifications (buckets), and values can tacitly relate to each other. But you
will not go so far as to normalize into fine components like you would in a
relational database, since Riak performs no sense of relational joins to
recompose values.

Day 1 Homework

Find
1. Bookmark the online Riak project documentation and discover the REST
API documentation.

2. Find a good list of browser-supported MIME types.

3. Read the example Riak config dev/devl/etc/app.config, and compare it to the
other dev configurations.

Do
1. Using PUT, update animals/polly to have a Link pointing to photos/polly.jpg.

2. POST a file of a MIME type we haven't tried (such as application/pdf), find the
generated key, and hit that URL from a web browser.

3. Create a new bucket type called medicines, PUT a JPEG image value (with
the proper MIME type) keyed as antibiotics, and link to the animal Ace
(poor, sick puppy).

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/rwdata
http://forums.pragprog.com/forums/rwdata



