
Extracted from:

Seven Databases
in Seven Weeks

A Guide to Modern Databases
and the NoSQL Movement

This PDF file contains pages extracted from Seven Databases in Seven Weeks,
published by the Pragmatic Bookshelf. For more information or to purchase a

paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printer versions; the

content is otherwise identical.

Copyright © 2010 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

Seven Databases
in Seven Weeks

A Guide to Modern Databases
and the NoSQL Movement

Eric Redmond
Jim R. Wilson

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

Apache, Apache HBase, Apache CouchDB, HBase, CouchDB, and the HBase and CouchDB
logos are trademarks of The Apache Software Foundation. Used with permission. No endorse-
ment by The Apache Software Foundation is implied by the use of these marks.

The team that produced this book includes:

Jackie Carter (editor)
Potomac Indexing, LLC (indexer)
Kim Wimpsett (copyeditor)
David J Kelly (typesetter)
Janet Furlow (producer)
Juliet Benda (rights)
Ellie Callahan (support)

Copyright © 2012 Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-93435-692-0
Encoded using the finest acid-free high-entropy binary digits.
Book version: P2.0—August 2012

http://pragprog.com

Aggregated Queries

The queries we investigated yesterday are useful for basic extraction of data,
but any post-processing would be up to you to handle. For example, say we
wanted to count the phone numbers greater than 559–9999; we would prefer
the database perform such a count on the back end. Like in PostgreSQL,
count() is the most basic aggregator. It takes a query and returns a number
(of matches).

db.phones.count({'components.number': { $gt : 5599999 } })

50000

To see the power of the next few aggregating queries, let’s add another 100,000
phone numbers to our phones collection, this time with a different area code.

populatePhones(855, 5550000, 5650000)

The distinct() command returns each matching value (not a full document)
where one or more exists. We can get the distinct component numbers that
are less than 5,550,005 in this way:

db.phones.distinct('components.number', {'components.number': { $lt : 5550005 } })

[5550000, 5550001, 5550002, 5550003, 5550004]

Although we have two 5,550,000 numbers (one with an 800 area code and
one with 855), it appears in the list only once.

The group() aggregate query is akin to GROUP BY in SQL. It’s also the most com-
plex basic query in Mongo. We can count all phone numbers greater than
5,599,999 and group the results into different buckets keyed by area code.
key is the field we want to group by, cond (condition) is the range of values
we’re interested in, and reduce takes a function that manages how the values
are to be output.

Remember mapreduce from the Riak chapter? Our data is already mapped
into our existing collection of documents. No more mapping is necessary;
simply reduce the documents.

db.phones.group({
initial: { count:0 },
reduce: function(phone, output) { output.count++; },
cond: { 'components.number': { $gt : 5599999 } },
key: { 'components.area' : true }

})

[{ "800" : 50000, "855" : 50000 }]

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/rwdata
http://forums.pragprog.com/forums/rwdata

Change Is Good

Aggregated queries return a structure other than the individual documents we’re
used to. count() aggregates the result into a count of documents, distinct() aggregates
the results into an array of results, and group() returns documents of its own design.
Even mapreduce generally takes a bit of effort to retrieve objects that resemble your
internal stored documents.

The following two examples are, admittedly, odd use cases. They serve only
to show the flexibility of group().

You can easily replicate the count() function with the following group() call. Here
we leave off the aggregating key:

db.phones.group({
initial: { count:0 },
reduce: function(phone, output) { output.count++; },
cond: { 'components.number': { $gt : 5599999 } }

})

[{ "count" : 100000 }]

The first thing we did here was set an initial object with a field named count
set to 0—fields created here will appear in the output. Next we describe what
to do with this field by declaring a reduce function that adds one for every
document we encounter. Finally, we gave group a condition restricting which
documents to reduce over. Our result was the same as count() because our
condition was the same. We left off a key, since we want every document
encountered added to our list.

We can also replicate the distinct() function. For performance sake, we’ll start
by creating an object to store the numbers as fields (we’re effectively creating
an ad hoc set). In the reduce function (which is run for each matching docu-
ment), we just set the value to 1 as a placeholder (it’s the field we want).

Technically this is all we need. However, if we want to really replicate distinct(),
we should return an array of integers. So, we add a finalize(out) method that is
run one last time before returning a value to convert the object into an array
of field values. The function then converts those number strings into integers
(if you really want to see the sausage being made, run the following without
the finalize function set).

db.phones.group({
initial: { prefixes : {} },
reduce: function(phone, output) {

output.prefixes[phone.components.prefix] = 1;

6 •

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/rwdata
http://forums.pragprog.com/forums/rwdata

},
finalize: function(out) {

var ary = [];
for(var p in out.prefixes) { ary.push(parseInt(p)); }
out.prefixes = ary;

}
})[0].prefixes

[555, 556, 557, 558, 559, 560, 561, 562, 563, 564]

The group() function is powerful—like SQL’s GROUP BY—but Mongo’s implemen-
tation has a downside, too. First, you are limited to a result of 10,000
documents. Moreover, if you shard your Mongo collection (which we will to-
morrow) group() won’t work. There are also much more flexible ways of crafting
queries. For these and other reasons, we’ll dive into MongoDB’s version of
mapreduce in just a bit. But first, we’ll touch on the boundary between client-
side and server-side commands, which is a distinction that has important
consequences for your applications.

Server-Side Commands

If you were to run the following function through a command line (or through
a driver), the client will pull each phone locally, all 100,000 of them, and save
each phone document one by one to the server.

mongo/update_area.js
update_area = function() {

db.phones.find().forEach(
function(phone) {

phone.components.area++;
phone.display = "+"+
phone.components.country+" "+
phone.components.area+"-"+
phone.components.number;

db.phone.update({ _id : phone._id }, phone, false);
}

)
}

However, the Mongo db object provides a command named eval(), which passes
the given function to the server. This dramatically reduces chatter between
the client and server since the code is executed remotely.

> db.eval(update_area)

In addition to evaluating JavaScript functions, there are several other prebuilt
commands in Mongo, most of which are executed on the server, although

• Click HERE to purchase this book now. discuss

• 7

http://media.pragprog.com/titles/rwdata/code/mongo/update_area.js
http://pragprog.com/titles/rwdata
http://forums.pragprog.com/forums/rwdata

some require executing only under the admin database (which you can access
by entering use admin).

> use admin
> db.runCommand("top")

The top command will output access details about all collections on the server.

> use book
> db.listCommands()

On running listCommands(), you may notice a lot of commands we’ve used. In
fact, you can execute many common commands through the runCommand()
method, such as counting the number of phones. However, you may notice
a slightly different output.

> db.runCommand({ "count" : "phones" })
{ "n" : 100000, "ok" : 1 }

The number (n) returned is correct (100,000), but the format is an object with
an ok field. That’s because db.phones.count() is a wrapper function created for
our convenience by the shell’s JavaScript interface, whereas runCommand() is
a count executed on the server. Remember that we can play detective on how
a function like count() works by leaving off the calling parentheses.

> db.phones.count
function (x) {

return this.find(x).count();
}

Interesting! collection.count() is just a convenience wrapper for calling count() on
the results of find() (which itself is just a wrapper for a native query object that
returns a cursor pointing to results). If you run that query...

> db.phones.find().count

you will get a much larger function (too much to print here). But look in the
code, and after a bunch of setup, you’ll find lines like this:

var res = this._db.runCommand(cmd);
if (res && res.n != null) {

return res.n;
}

Double interesting! count() executes runCommand() and returns the value from
the n field.

8 •

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/rwdata
http://forums.pragprog.com/forums/rwdata

runCommand

And while we’re digging into how methods work, let’s take a look at the runCom-
mand() function.

> db.runCommand
function (obj) {

if (typeof obj == "string") {
var n = {};
n[obj] = 1;
obj = n;

}
return this.getCollection("$cmd").findOne(obj);

}

It turns out that runCommand() is also a helper function that wraps a call to a
collection named $cmd. You can execute any command using a call directly
to this collection.

> db.$cmd.findOne({'count' : 'phones'})
{ "n" : 100000, "ok" : 1 }

This is bare-metal and how drivers generally communicate to the Mongo
server.

Diversion

We took this diversion for two reasons:

• To drive home the idea that most of the magic you execute on the mongo
console is executed on the server, not the client, which just provides
convenient wrapper functions.

• We can leverage the concept of executing server-side code for our own
gain to create something in MongoDB that’s similar to the stored proce-
dures we saw in PostgreSQL.

Any JavaScript function can be stored in a special collection named system.js.
This is a normal collection; you just save the function by setting the name as
the _id, and value is the function object.

> db.system.js.save({
_id:'getLast',
value:function(collection){

return collection.find({}).sort({'_id':1}).limit(1)[0]
}

})

• Click HERE to purchase this book now. discuss

• 9

http://pragprog.com/titles/rwdata
http://forums.pragprog.com/forums/rwdata

What we normally would do next is execute it on the server directly. The eval()
function passes the string to the server, evaluates it as JavaScript code, and
returns the results.

> db.eval('getLast(db.phones)')

It should return the same values as calling getLast(collection) locally.

> db.system.js.findOne({'_id': 'getLast'}).value(db.phones)

It’s worth mentioning that eval() blocks the mongod as it runs, so it’s mainly
useful for quick one-offs and tests, not common production procedures. You
can use this function inside $where and mapreduce, too. We have the last
weapon in our arsenal to begin executing mapreduce in MongoDB.

Mapreduce (and Finalize)

The Mongo mapreduce pattern is similar to Riak’s, with a few small differences.
Rather than the map() function returning a converted value, Mongo requires
your mapper to call an emit() function with a key. The benefit here is that you
can emit more than once per document. The reduce() function accepts a single
key and a list of values that were emitted to that key. Finally, Mongo provides
an optional third step called finalize(), which is executed only once per mapped
value after the reducers are run. This allows you to perform any final calcu-
lations or cleanup you may need.

Since we already know the basics of mapreduce, we’ll skip the intro wading-
pool example and go right to the high-dive. Let’s generate a report that counts
all phone numbers that contain the same digits for each country. First we’ll
store a helper function that extracts an array of all distinct numbers (under-
standing how this helper works is not imperative to understanding the overall
mapreduce).

mongo/distinct_digits.js
distinctDigits = function(phone){
var

number = phone.components.number + '',
seen = [],
result = [],
i = number.length;

while(i--) {
seen[+number[i]] = 1;

}
for (i=0; i<10; i++) {

if (seen[i]) {
result[result.length] = i;

}
}

10 •

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/rwdata/code/mongo/distinct_digits.js
http://pragprog.com/titles/rwdata
http://forums.pragprog.com/forums/rwdata

return result;
}
db.system.js.save({_id: 'distinctDigits', value: distinctDigits})

Load the file in the mongo command line. If the file exists in the same directory
you launched mongo from, you need only the filename; otherwise, a full path
is required.

> load('distinct_digits.js')

With all that in, we can do a quick test (if you have some trouble, don’t feel
shy about adding a smattering of print() functions).

db.eval("distinctDigits(db.phones.findOne({ 'components.number' : 5551213 }))")

[1, 2, 3, 5]

Now we can get to work on the mapper. As with any mapreduce function,
deciding what fields to map by is a crucial decision, since it dictates the
aggregated values that you return. Since our report is finding distinct num-
bers, the array of distinct values is one field. But since we also need to query
by country, that is another field. We add both values as a compound key:
{digits : X, country : Y}.

Our goal is to simply count these values, so we emit the value 1 (each docu-
ment represents one item to count). The reducer’s job is to sum all those 1s
together.

mongo/map_1.js
map = function() {

var digits = distinctDigits(this);
emit({digits : digits, country : this.components.country}, {count : 1});

}

mongo/reduce_1.js
reduce = function(key, values) {

var total = 0;
for(var i=0; i<values.length; i++) {

total += values[i].count;
}
return { count : total };

}

results = db.runCommand({
mapReduce: 'phones',
map: map,
reduce: reduce,
out: 'phones.report'

})

• Click HERE to purchase this book now. discuss

• 11

http://media.pragprog.com/titles/rwdata/code/mongo/map_1.js
http://media.pragprog.com/titles/rwdata/code/mongo/reduce_1.js
http://pragprog.com/titles/rwdata
http://forums.pragprog.com/forums/rwdata

Since we set the collection name via the out parameter (out : 'phones.report'), you
can query the results like any other. It’s a materialized view that you can see
in the show tables list.

> db.phones.report.find({'_id.country' : 8})
{
"_id" : { "digits" : [0, 1, 2, 3, 4, 5, 6], "country" : 8 },
"value" : { "count" : 19 }

}
{
"_id" : { "digits" : [0, 1, 2, 3, 5], "country" : 8 },
"value" : { "count" : 3 }

}
{
"_id" : { "digits" : [0, 1, 2, 3, 5, 6], "country" : 8 },
"value" : { "count" : 48 }

}
{
"_id" : { "digits" : [0, 1, 2, 3, 5, 6, 7], "country" : 8 },
"value" : { "count" : 12 }

}
has more

Type it to continue iterating through the results. Note the unique emitted keys
are under the field _ids, and all of the data returned from the reducers are
under the field value.

If you prefer that the mapreducer just output the results, rather than out-
putting to a collection, you can set the out value to { inline : 1 }, but bear in
mind there is a limit to the size of a result you can output. As of Mongo 2.0,
that limit is 16MB.

Recall from the Riak chapter that reducers can have either mapped (emitted)
results or other reducer results as inputs. Why would the output of one
reducer feed into the input of another if they are mapped to the same key?
Think of how this would look if run on separate servers, as shown in Figure
22, A Mongo map reduce call over two servers, on page 13.

Each server must run its own map() and reduce() functions and then push those
results to be merged with the service that initiated the call, gathering them
up. Classic divide and conquer. If we had renamed the output of the reducer
to total instead of count, we would have needed to handle both cases in the
loop, as shown here:

mongo/reduce_2.js
reduce = function(key, values) {
var total = 0;
for(var i=0; i<values.length; i++) {

12 •

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/rwdata/code/mongo/reduce_2.js
http://pragprog.com/titles/rwdata
http://forums.pragprog.com/forums/rwdata

mongos

mongod 1 mongod 2

map map map

reduce

map map map

reduce

reduce

db.runCommand({'mapReduce'...})

Figure 22—A Mongo map reduce call over two servers

var data = values[i];
if('total' in data) {

total += data.total;
} else {

total += data.count;
}

}
return { total : total };

}

However, Mongo predicted that you might need to perform some final changes,
such as rename a field or some other calculations. If we really need the output
field to be total, we can implement a finalize() function, which works the same
way as the finalize function under group().

• Click HERE to purchase this book now. discuss

• 13

http://pragprog.com/titles/rwdata
http://forums.pragprog.com/forums/rwdata

