
Extracted from:

Create Mobile Games with Corona
Build with Lua on iOS and Android

This PDF file contains pages extracted from Create Mobile Games with Corona,
published by the Pragmatic Bookshelf. For more information or to purchase a

paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2013 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

Create Mobile Games with Corona
Build with Lua on iOS and Android

Silvia Domenech

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

The team that produced this book includes:

Fahmida Y. Rashid and Aron Hsiao (editors)
Potomac Indexing, LLC (indexer)
Candace Cunningham (copyeditor)
David J Kelly (typesetter)
Janet Furlow (producer)
Juliet Benda (rights)
Ellie Callahan (support)

Copyright © 2013 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-937785-57-4
Encoded using the finest acid-free high-entropy binary digits.
Book version: P2.0—January 2014

http://pragprog.com

2.3 Designing Our First Game: Planet Defender

Now that we’ve installed Corona and learned the basic programming vocabu-
lary and techniques needed to develop games, it’s time to start making a real
game.

For our first project, we’ll design a game that we can code and understand
using the basic knowledge that we already have. We’ll need to create and
manage three main things.

• A way for the game to keep updating itself, frame after frame, in an endless
loop that handles most of the game-related code (a game loop)

• A set of images to graphically represent the elements of the game (sprites)

• A few buttons and a start menu to enable the player to interact with the
game (interactivity)

To make things easier on ourselves as beginners, we’ll design a game with as
little movement as possible—a space-themed game with enemy ships that fly
in straight lines toward a planet at the bottom of the screen. The player will
be in charge of defending the planet by destroying (tapping) the approaching
ships. The game will end whenever an enemy ship reaches the planet.

Target Features

When designing a game, the best way to begin is by outlining a list of the
features the game will have. For our first game, we’ll need the following:

• A background image
• A properly positioned planet image
• Enemy ships that move toward the planet
• Functions to interpret and act on player input (screen taps) so that ships

can be destroyed
• A score counter

2.4 Creating the Project

It’s time to create a new project to hold our first game. Create a new multi-
screen application. Rename the automatically generated scenetemplate.lua scene
file to game.lua—we’ll work only on the project’s gameplay, so calling the code
file game.lua makes it easier to recognize. It’s important to change the scene
names to something explicit because it makes coding much easier in the long
run. Using scenetemplate.lua can be more comfortable now, but in five months’
time we might not remember what the scene had, and we’ll have to read it to
know whether that’s the file we want to update.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/sdcorona
http://forums.pragprog.com/forums/sdcorona

We also have to open main.lua to update the file we want to load first, because
otherwise we’ll get an error once the program attempts to open scenetemplate.lua.
To update this, make sure that main.lua calls the scene name by using
storyboard.gotoScene().

GameLoop/GameLoop/main.lua
-- Require the Storyboard API
local storyboard = require "storyboard"

-- load the game.lua scene
storyboard.gotoScene("game")

Now that the program will go directly to the game scene, it’s time for us to
start working on it.

Drawing the Background Image

Since it’s a bit daunting to start using a new programming language without
seeing results, let’s begin by adding a background image to the game. As
game developers, seeing images in our games is great because they let us see
that the program isn’t broken (or at least not completely). We’ll sometimes
have to make further checks to see whether the nonvisual code is working,
but seeing images behave in the way we expect them to is usually a good sign.

We can draw an image on the stage by calling the display.newImage() function. Pass
as a parameter the name of an image located in the game project folder, and
Corona will load and display the image. To load an image called space_background.jpg,
write display.newImage("space_background.jpg"). The function returns the image Corona
has just loaded, so you’ll usually want to store it as a local variable to be able to
change its properties easily. You can save images in a folder to make your project
folder neater, and then pass the relative path (for example, foldername/space_back-
ground.jpg) to this function.

• 6

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/sdcorona/code/GameLoop/GameLoop/main.lua
http://pragprog.com/titles/sdcorona
http://forums.pragprog.com/forums/sdcorona

Figure 12—The game’s
background image

When working with images, we can’t just add them
anywhere and hope they look good. In games, we
usually work with many images, so we have to
make sure each image is well-positioned. Also,
when changing scenes, it’s common to remove
everything from the stage. To make it easier for us
to access all objects on the stage, Corona has
something called display groups. A group (or display
group) in Corona is just like a folder on your PC—
it helps you keep your images organized. Each
scene automatically generated by Corona comes
with a group variable called group where we can add
our scene objects. We can use that whenever we
work with images.

To add a display object to a group, call the
group:insert() function, and the image will be added
to the scene’s main group. Now load a background image using display.newImage()
and add it to the main scene group using group:insert().

You can set the image’s anchor point, which is the point responsible for
moving the image around, by setting the image’s anchorX and anchorY variables.
You can set values between 0 (top or left) and 1 (bottom or right). In this case,
since we want to place the image’s top left corner in the screen’s top left corner,
we have to set both values to 0.

GameLoop/GameLoop/game.lua
-- Load a background image when the scene is created
function scene:createScene(event)

local group = self.view

-- Load an image and add it to the scene's main group
local image = display.newImage("images/space_background.jpg")
image.anchorX, image.anchorY = 0, 0
group:insert(image)

end

If you compile the project now, you’ll be able to see the image in action, as
shown in Figure 12, The game’s background image.

Right now, it doesn’t move or do anything, but it’s always nice to see that the
previously empty stage is no longer empty.

• Click HERE to purchase this book now. discuss

Creating the Project • 7

http://media.pragprog.com/titles/sdcorona/code/GameLoop/GameLoop/game.lua
http://pragprog.com/titles/sdcorona
http://forums.pragprog.com/forums/sdcorona

2.5 Coding the Game Loop

Having images on the screen is great, but we need a way to regularly update
them to create the illusions of motion and activity. Otherwise, players will be
bored by bullets, enemies, and a player character that just sit there, motion-
less. In this game, we have to move enemy ships and get rid of dead units
(the ones that have been tapped).

Adding an Event Listener

Corona divides every second into a fixed number of up to sixty frames, which
is the number of times that the stage is rendered and shown to the user. We
can ask the program to call a function of our choosing whenever it’s time for
a new frame to appear. We tell Corona to do this using an event listener called
enterFrame.

An event listener is like a little spy in Corona programs that will call a function
for us (whichever function we ask it to call) whenever a specific event happens.
In the case of the enterFrame listener, the event is the start of a new frame.
Corona has other listeners that can call a function each time an animation
changes, when a sound ends, or even when the player taps the screen.

We ask an event listener to do these things for us by calling the addEventListener()
function. If we want an event listener to focus on just one object, we’ll call
object:addEventListener(), but when we want to track a generic event such as when
the stage moves to the next frame, we’ll use Runtime:addEventListener(), which
assigns the listener to the game’s running environment in general.

Many game developers call their frame-update functions either tick() or enter-
Frame(). We’ll use tick() because it’s easier to write and reminds us that time is
passing with each update. We’ll use the tick() name for all of our frame-update
functions throughout the book, but remember that you can name the function
in any way you like and it will still be called as long as you pass its name to
the addEventListener() function along with "enterFrame".

Now write an empty tick() function to later call it through an enterFrame event
listener.

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/sdcorona
http://forums.pragprog.com/forums/sdcorona

GameLoop/GameLoop/game.lua
-- A placeholder for the tick function
-- Called every frame
function tick()

-- Here we'll add the code that needs to be executed each frame
end

Now that we know the type of event we’ll add (enterFrame), the function we need
to call to set up the event listener (Runtime:addEventListener()), and the function
we want the event listener to call (tick()), add the event listener to the enterScene()
function to call tick() sixty times per second. Remember that Corona generated
enterScene() automatically when we created a new storyboard project and that
the function is called as soon as the program enters the scene.

GameLoop/GameLoop/game.lua
-- Called immediately after scene has moved onscreen:
function scene:enterScene(event)

local group = self.view
-- Add an event listener
-- This will call the tick function each frame:
Runtime:addEventListener("enterFrame", tick)

end

This enterFrame event listener is like a little CIA agent who will watch the game
and call the tick() function, which is like the headquarters, every time the
program enters a new frame. All we have to do now is add code to the tick()
function to update all of the game’s objects, doing whatever needs to be done
in each frame to make this program behave like a game.

Adding EnterFrame Listeners to Objects

Corona lets us add event listeners to actual game objects. This means we can
keep track of when the player touches an object in the game and if two objects
collide with each other. We can also add an enterFrame event listener to game
objects such as sprites, which you’ll learn about in Chapter 3, Sprites and
Movement, on page ?. However, if we add event listeners to objects that can
be removed from the game, we need to make sure we also call the
removeEventListener() function to remove the listeners. Otherwise, we might not
clear it out properly, and it might be called for as long as the app remains
active.

To avoid this, it’s a good idea to avoid enterFrame events, consolidate actions
in the game tick(), and make sure that we call relevant update functions for
each of the objects on the stage. That way, the only time we’ll have to remove
an enterFrame event listener is if we ever leave the game scene. This also saves
Corona from keeping track of lots of event listeners; if we’re routinely tracking

• Click HERE to purchase this book now. discuss

Coding the Game Loop • 9

http://media.pragprog.com/titles/sdcorona/code/GameLoop/GameLoop/game.lua
http://media.pragprog.com/titles/sdcorona/code/GameLoop/GameLoop/game.lua
http://pragprog.com/titles/sdcorona
http://forums.pragprog.com/forums/sdcorona

a series of recurrent events for lots of objects, then we can also consolidate
them into a single event and loop through affected objects.

Updating the Game

Now we have a game that calls the tick() function regularly, but it doesn’t
actually do anything that a player can see yet because we haven’t provided
any instructions to Corona in the tick() function. Generally speaking, each
time through tick() we’ll check to see whether we need to add new objects (like
enemy ships or bullets) to the game and whether a player has tapped an
existing object, and we’ll need to update all of the existing objects (move
enemy ships, remove a ship that has been tapped, and so on).

The easiest way to structure a game loop is to make a mental list of all the
objects in the game and then add a function call to them in the tick() function
that updates each of them appropriately (whatever that may mean) in each
frame. Planet Defender is a simple game, so the only objects that we need to
update are the enemy ships. We’ll also have to occasionally add new ships to
the game, which adds a little wrinkle, but there’s no “player ship” object in
this game, or any other complications for the time being.

Structuring the Game Loop

Now that we’ve decided the tick() function will need to create enemy ships and
update them as time passes, we can write a basic set of instructions using
placeholder function calls for each of the actions we plan to add. This means
we’ll call the functions we need to have (as though we’d already written them),
and then we can actually create each of the needed functions afterward. This
makes it easy to have a manageable big-picture view of what we’re doing and
also keeps our tick() function clean and simple, even in complex games with
lots and lots of updates and instructions. A game’s tick() function is like its
brain, so it’s a good idea to keep it neat and organized so that it’s easy to
maintain and update the game as needed.

Let’s start by adding placeholder calls to the tick() function. Add calls to
functions named updateEnemies() and addEnemies(). updateEnemies() will update the
enemy ships, and addEnemies() will add new enemies to the game.

GameLoop/GameLoop/game.lua
-- The tick function that will get called each frame
function tick()

-- Call several functions to update our game
updateEnemies()
addEnemies()

end

• 10

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/sdcorona/code/GameLoop/GameLoop/game.lua
http://pragprog.com/titles/sdcorona
http://forums.pragprog.com/forums/sdcorona

At this point, the game will try to call both of those functions each frame.
Since we haven’t written these yet, if we try to run the game, Corona will
complain because it can’t find the functions. Let’s begin to fix this by writing
an updateEnemies() function just before the createScene() function. This function
needs to update the enemy ship positions on the screen to create the illusion
of movement as time passes and to remove any ships that need to be removed.
Since we haven’t yet covered how to add ships, write a short comment
describing what we want the function to do, and we’ll get around to the
actual code in in the next chapter. Also, print a short Enemies updated message
on the console (this message will be printed once each frame) to see that the
tick function is really being called.

GameLoop/GameLoop/game.lua
-- This function will update our enemies each frame
function updateEnemies()

print("Enemies updated")
end

Now write the addEnemies() function. We’ll also put off the real work that goes
into this function for now, so print another message saying Enemies added each
time this function gets called.

Once you add this, running the code in the simulator should result in alter-
nating messages on the console saying that the enemies have been updated
and added, churning out very quickly. If these messages don’t appear, it
means that something (calls to a function, an event listener, and so on) is
probably missing or mistyped. This simple debugging technique illustrates
why the print() function is so useful.

You can also use a debugger from some of the integrated development envi-
ronments Appendix 1, Corona Resources, on page ?.

GameLoop/GameLoop/game.lua
-- This function is called each frame and will add enemies to the game
function addEnemies()

print("Enemies added")
end

We’ve written the most basic game loop we can think of, yet it’s a good way
to see how to update games. This code is ready to be turned into something
playable with the addition of a bit more code. We can add anything we want
to the tick() function, or to any functions that it calls, and all of the instructions
in them will be carried out each time Corona enters a new frame.

• Click HERE to purchase this book now. discuss

Coding the Game Loop • 11

http://media.pragprog.com/titles/sdcorona/code/GameLoop/GameLoop/game.lua
http://media.pragprog.com/titles/sdcorona/code/GameLoop/GameLoop/game.lua
http://pragprog.com/titles/sdcorona
http://forums.pragprog.com/forums/sdcorona

Configuring the Frame Rate

The game loop function is ready to do our bidding with each tick of Corona’s
clock, but we might want more or fewer ticks every second depending on
whether we’re coding fast-paced action or very slow-moving games. We can
set the number of frames per second (FPS) that will occur in the game by
updating the program’s build.settings configuration file and assigning a value
to the fps variable. When we set this variable to either 30 or 60 (the two choices
that Corona accepts), the app will enter a new frame either thirty or sixty
times per second, respectively.

GameLoop/GameLoop/build.settings
-- Change our game's frame rate to 30 or 60 (30 in this case)
fps = 30,

For this game, we’ll keep the value at 30, which is the default value if we don’t
change anything. In any case, it’s a good idea to test both speeds to see the
difference in a game.

2.6 What We Covered

In this chapter, we covered how to create a game loop and event listeners,
which are the fundamental frameworks that we’ll use to build all of the games
in this book. We saw how a series of functions called from the game loop come
together into something that players experience as a game. We created a game
project for our first game, Planet Defender, and wrote placeholder functions
for enemy-ship creation and updates. In the next chapter, we’ll build on this
chapter’s work, adding spaceships and other things that will begin to turn
our project into an entertaining game.

• 12

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/sdcorona/code/GameLoop/GameLoop/build.settings
http://pragprog.com/titles/sdcorona
http://forums.pragprog.com/forums/sdcorona

