
Extracted from:

GIS for Web Developers
Adding Where to Your Web Applications

This PDF file contains pages extracted from GIS for Web Developers, published by the

Pragmatic Bookshelf. For more information or to purchase a paperback or PDF copy,

please visit http://www.pragmaticprogrammer.com.

Note: This extract contains some colored text (particularly in code listing). This is

available only in online versions of the books. The printed versions are black and white.

Pagination might vary between the online and printer versions; the content is otherwise

identical.

Copyright © 2007The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any

means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragmaticprogrammer.com

Chapter 8

OGC Clients
Here in our third (and final) OGC chapter, we look at applications and

web frameworks that consume OGC services. We start with Mapbuilder,

an Ajax framework that ships with GeoServer. Next, we look at another

Ajax framework named OpenLayers. This toolkit was inspired by the

architecture of Google Maps. We finish the chapter with uDig, a desktop

viewer that allows you to mix OGC data sets with local shapefiles and

PostGIS data sets.

8.1 Mapbuilder

Mapbuilder is the Ajax toolkit that powers the map previews in Geo-

Server. We’re going to take a look at it in greater detail because you get

it for free—why wouldn’t you use it? Additionally, it gives us an excuse

to look at another OGC standard, the Web Map Context file.

Recall that the preview maps are autogenerated each time GeoServer

starts. (See Section 6.3, Installing GeoServer, on page 139.) That makes

them a great learning tool. No matter how badly things get screwed up,

you are always just a restart away from starting over with a clean slate.

Of course, this can also be a hindrance. If you’re not careful, all of your

changes to the files can get blown away in a single reboot. Later in this

section we’ll copy a map out of harm’s way so that our changes will be

permanent.

Let’s go hunting for those default maps. Take a look at geoserver/

webapps/geoserver/preview. You should see three files per preview map.

These files take the form [namespace]_[layername]. g4wd_st99_d00.html

is the map. g4wd _st99_d00.xml is the OGC Context file. Finally,

g4wd_st99_d00Config.xml is the Mapbuilder configuration file. Let’s take

a closer look at each one.

MAPBUILDER 182

The HTML Map

Open g4wd_st99_d00.html in a text editor:

<html>

<head>

<title>g4wd:st99_d00 Preview</title>

<link rel="stylesheet" href="../../style.css" type="text/css">

<link rel="stylesheet" href="../mb/lib/skin/default/html.css"

type="text/css">

<script type="text/javascript">

var mbConfigUrl='g4wd_st99_d00Config.xml';

</script>

<script type="text/javascript" src="../mb/lib/Mapbuilder.js"></script>

</head>

In the head section, a couple of CSS files are linked in. The core Map-

builder.js file is included as well. But most important, a pointer back to

the Mapbuilder config file is created.

<body onload="mbDoLoad()">

<table border="0">

<tr>

<td valign="top" id="locatorMap"

style="background-color: white;" />

<td rowspan="2" valign="top">

<table border="0">

<tr>

<td align="left" id="mainButtonBar"/>

<td align="right" id="cursorTrack" />

</tr>

<tr>

<td colspan="2" id="mainMapPane"

style="background-color: white;" />

</tr>

<tr align="right">

<td colspan="2">

<table>

<tr>

<td align="left" id="mapScaleText"/>

<td align="right">

Powered by

Community Map Builder

</td>

<td>

</td>

</tr>

</table>

</td>

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/sdgis

MAPBUILDER 183

</tr>

</table>

</td>

</tr>

<tr><td id="legend" /></tr>

<tr><td colspan="3" id="featureList" /></tr>

<tr><td colspan="3" id="transactionResponse" /></tr>

<tr><td colspan="3"><div id="eventLog" /></td></tr>

</table>

</body>

</html>

Ignoring the cardinal sin of using HTML tables for page layout (hey,

this is free code—you get what you pay for), what should leap out

at you is the copious use of id attributes. These ids are placeholders

for the various map widgets. The most important one of the bunch is

mainMapPane—that is where the data layer appears. Everything else is

reasonably well named. Widgets such as locatorMap, cursorTrack, and

mapScaleText should leave little to the imagination in terms of what

they do.

If you strip away everything else on the page, here is a bare-bones

Mapbuilder map:

<html>

<head>

<title>g4wd:st99_d00 Preview</title>

<link rel="stylesheet" href="../../style.css" type="text/css">

<link rel="stylesheet" href="../mb/lib/skin/default/html.css"

type="text/css">

<script type="text/javascript">

var mbConfigUrl='g4wd_st99_d00Config.xml';

</script>

<script type="text/javascript" src="../mb/lib/Mapbuilder.js"></script>

</head>

<body onload="mbDoLoad()">

<div id="mainMapPane" style="background-color: white;" />

</body>

</html>

Before we can try this bare-bones HTML, we need to “skinny” down

the Mapbuilder config file as well. Right now it is expecting many more

ids to be available on the page. It’ll fail silently until we get those two

files back in sync again. (OK, technically it will throw errors into the

JavaScript console. But who looks there, right?)

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/sdgis

MAPBUILDER 184

The Config File

The Mapbuilder config file contains the instructions used to fill in the

id placeholders with working widgets. Open g4wd_st99_d00Config.xml in a

text editor. There’s a lot going on, isn’t there? The following is a greatly

thinned-out config file. It won’t actually run, but it will help us see the

basic elements without getting bogged down in all the details.

<MapbuilderConfig>

<models>

<Context id="mainMap">

<defaultModelUrl>g4wd_st99_d00.xml</defaultModelUrl>

<widgets>

<MapPane id="mainMapWidget">...</MapPane>

</widgets>

</Context>

<Context id="locator">

<defaultModelUrl>g4wd_st99_d00.xml</defaultModelUrl>

<widgets>

<MapPane id="locatorWidget">...</MapPane>

</Context>

</models>

<widgets>

<ZoomIn id="zoomIn">

<buttonBar>mainButtonBar</buttonBar>

<targetModel>mainMap</targetModel>

...

</ZoomIn>

<ZoomOut id="zoomOut">

<buttonBar>mainButtonBar</buttonBar>

<targetModel>mainMap</targetModel>

...

</ZoomOut>

<DragPan id="dragPan">

<buttonBar>mainButtonBar</buttonBar>

<targetModel>mainMap</targetModel>

...

</DragPan>

<Reset id="reset">

<buttonBar>mainButtonBar</buttonBar>

<targetModel>mainMap</targetModel>

...

</Reset>

</widgets>

</MapbuilderConfig>

Notice that the model element has two Contexts. The preview map has

two maps—the main one in the center and the little map up in the left

corner. Each Context has a pointer back to a OGC Context file. This,

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/sdgis

MAPBUILDER 185

as you’ll see in just a moment, is where you define the data layers to

be displayed. Notice the clean separation of MVC concerns? Here, we’re

simply defining a map widget, which doesn’t much care what data it

displays. Defining the map layers and the styling is someone else’s job.

Each Context has a list of widgets. I’m displaying only the important

one here—the map widget. Notice that there are widgets defined outside

of a context as well. These are the zoom buttons. They are tied back to

a specific Context through the targetModel element.

Removing all of the extraneous stuff, here is a bare-bones Mapbuilder

config file to go with our stripped-down HTML file:

<?xml version="1.0" encoding="utf-8" standalone="no"?>

<MapbuilderConfig version="0.2.1"

id="referenceTemplate"

xmlns="http://mapbuilder.sourceforge.net/mapbuilder"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://mapbuilder.sourceforge.net/mapbuilder

../../mapbuilder/lib/schemas/config.xsd">

<models>

<Context id="mainMap">

<defaultModelUrl>g4wd_st99_d00.xml</defaultModelUrl>

<widgets>

<MapPane id="mainMapPane">

<mapContainerId>mainMapContainer</mapContainerId>

</MapPane>

</widgets>

</Context>

</models>

<skinDir>../mb/lib/skin/default</skinDir>

</MapbuilderConfig>

Save this file, and click the Refresh button in your browser. (See Fig-

ure 8.1, on the next page.) Notice that we don’t have to update Geo-

Server when we make changes to these files. The server infrastructure

is in place; we’re just playing around in the web tier. All of the normal

web development life cycles apply.

The OGC Web Map Context File

Let’s take a look at the last file of the three. Open g4wd_st99_d00.xml in

a text editor:

The Context file is short, sweet, and to the point. It defines the viewable

nonspatial attributes of the map such as the size and the title. It also

identifies the data layer(s) that should be included on the map. (You’ll

learn more about multiple layers in just a moment.)

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/sdgis

MAPBUILDER 186

Figure 8.1: A simple Mapbuilder map

<ViewContext>

<General>

<Window width="500" height="285"/>

<BoundingBox SRS="EPSG:4326"

minx="-179.14734"

miny="17.884813"

maxx="179.77847000000006"

maxy="71.35256064399981"/>

<Title>g4wd:st99_d00 Map</Title>

<KeywordList>

<Keyword>g4wd:st99_d00</Keyword>

</KeywordList>

<Abstract></Abstract>

</General>

<LayerList>

<Layer queryable="1" hidden="0">

<Server service="OGC:WMS" version="1.1.1"

title="g4wd:st99_d00 Preview">

<OnlineResource xlink:type="simple" xlink:href="../wms"/>

</Server>

<Name>g4wd:st99_d00</Name>

<Title>g4wd:st99_d00</Title>

<SRS>EPSG:4326</SRS>

<FormatList><Format current="1">image/png</Format></FormatList>

</Layer>

</LayerList>

</ViewContext>

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/sdgis

MAPBUILDER 187

Figure 8.2: The U.S. map with better dimensions

Like the SLD file, the Context file is an OGC standard1 that can be

shared across server implementations. Write this file once, and it is

reusable from one server to the next.

This file finally allows us to do something about our poor, misshapen

U.S. map. The culprits are right there in plain sight: the Window and

BoundingBox elements. The Window is the same size for all of the pre-

view maps. The aspect ratio is roughly 2:1 (width:height); 500 pixels

wide by 285 pixels high is a reasonable default if we assume a mini-

mum screen resolution of 800 by 600 for our web visitors.

The problem is the dimensions of the BoundingBox. They don’t come

close to matching the ratio of the Window, giving us the dreaded “Silly

Putty” effect once again. Let’s naively pretend that EPSG 4326 is a

planar projection to keep the concepts simple. We’ll figure out in raw

degrees what our map dimension should be and use them unchanged

as pixel coordinates.

First, let’s tackle the longitude. Notice that the min and max are both

basically 180 degrees. That means the width of the map runs the full

360 degrees. (Recall that there are a couple of Alaskan islands that

cross the International Date Line, making for a pretty wide map.) If we

let 1 pixel equal 1 degree, then our Window should have a width of 360.

Looking at the latitude, the height should be roughly 71–17, or 54 pixels

tall. That’s not very tall, so let’s double both values to give us a map 720

pixels wide by 108 pixels tall.

1. http://www.opengeospatial.org/standards/wmc

CLICK HERE to purchase this book now.

http://www.opengeospatial.org/standards/wmc
http://www.pragmaticprogrammer.com/titles/sdgis

MAPBUILDER 188

Figure 8.3: Adjusting the BBOX to the map aspect ratio

Save the file, and hit Refresh in your browser. (See Figure 8.2, on the

preceding page.) The map dimensions might be kind of funny, but the

data layer is visibly less distorted than it was before.

The other thing we can do is adjust the BBOX to something that fits

the aspect ratio of the map. Open topp_states.xml in a text editor. Notice

the BBOX it is using to frame just the lower 48 states:

<Window width="500" height="285"/>

<BoundingBox SRS="EPSG:4326"

minx="-124.731422"

miny="24.955967"

maxx="-66.969849"

maxy="49.371735"/>

Flip our BBOX and Window settings to match these values, and click

Refresh in your browser. (See Figure 8.3.)

If we wanted to tweak the aspect ratio of the map using our naive algo-

rithm, the dimensions are 58 by 32. Multiplying each by eight yields

464 by 256—pretty close to the existing 500 by 285.

Building a Permanent Map

OK, we’ve had our fun. Restart GeoServer to get the default map in

place. Visit the preview map for st99_d00 one more time to make sure

that it has all of the widgets back in place.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/sdgis

MAPBUILDER 189

Now let’s move it out of harm’s way. Create a directory named g4wd in

geoserver/webapps/geoserver/. Copy st99_d00*.* from preview to the new

directory. We’re unashamedly taking the easy way out here—remember

all of those relative references to CSS and JavaScript files? By creating

our own directory at the same depth as preview, we’re ensuring that

none of the paths will break.

To make sure that there is no aspect ratio distortion, set the BBOX

to be the maximum possible and the Window to a perfect 2:1 ratio to

match. Pull it up in a browser so that you can see your changes as you

go.

<Window width="500" height="250"/>

<BoundingBox SRS="EPSG:4326"

minx="-180"

miny="-90"

maxx="180"

maxy="90"/>

As the name LayerList implies, a Context document supports multiple

layers. What happens if you add the Canadian Provinces layer? Copy it

from the Canadian Context document. While we’re at it, let’s change the

titles to something a bit more user-friendly. The legend should reflect

these changes. (See Figure 8.4, on the following page.)

<LayerList>

<Layer queryable="1" hidden="0">

<Server service="OGC:WMS" version="1.1.1"

title="g4wd:st99_d00 Preview">

<OnlineResource xlink:type="simple" xlink:href="../wms"/>

</Server>

<Name>g4wd:st99_d00</Name>

<Title>US</Title>

<SRS>EPSG:4326</SRS>

<FormatList><Format current="1">image/png</Format></FormatList>

</Layer>

<Layer queryable="1" hidden="0">

<Server service="OGC:WMS" version="1.1.1"

title="g4wd:prov_ab_p_geo83_e Preview">

<OnlineResource xlink:type="simple" xlink:href="../wms"/>

</Server>

<Name>g4wd:prov_ab_p_geo83_e</Name>

<Title>Canada</Title>

<SRS>EPSG:4326</SRS>

<FormatList><Format current="1">image/png</Format></FormatList>

</Layer>

</LayerList>

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/sdgis

MAPBUILDER 190

Figure 8.4: Mapbuilder displaying two layers

Notice that you can use the checkboxes in the legend to turn the layers

on and off. Pretty cool, eh? We aren’t limited to local data layers either.

Let’s add a live radar weather layer. Iowa State University offers this

data up in an OGC feed:

<Layer queryable="1" hidden="0">

<Server service="OGC:WMS" version="1.1.1" title="weather">

<OnlineResource xlink:type="simple"

xlink:href="http://mesonet.agron.iastate.edu/cgi-bin/wms/nexrad/n0r.cgi"/>

</Server>

<Name>nexrad-n0r-m45m</Name>

<Title>Weather</Title>

<SRS>EPSG:4326</SRS>

<FormatList><Format current="1">image/png</Format></FormatList>

</Layer>

If you copy one of the existing layers, you need to adjust four values.

The server Title attribute needs to be something unique. The OnlineRe-

source HREF can point either to a local server or to a remote one. (Tech-

nically, it needs to point to that server’s GetCapabilities document. Sur-

prised? You shouldn’t be.) You should change the Name element to the

name of the data layer. Finally, change the Title element to what you’d

like to appear in the legend.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/sdgis

MAPBUILDER 191

The way this weather data gets to us is interesting. The National Oce-

anic and Atmospheric Administration (NOAA) offers a free weather web

service,2 but unfortunately it is SOAP-based. We can get the data, but

not in a format that can be easily mapped. The Iowa State University

Department of Agronomy offers the same data, but as a WMS service.3

Are you beginning to see the power of a standards-based solution?

Remember our old friend the Blue Marble raster set? NASA offers it

up as an WMS service.4 Let’s add it our map. Put it at the end of the

LayerList.

<Layer queryable="1" hidden="0">

<Server service="OGC:WMS" version="1.1.1" title="blue marble">

<OnlineResource xlink:type="simple"

xlink:href="http://wms.jpl.nasa.gov/wms.cgi?"/>

</Server>

<Name>BMNG</Name>

<Title>Blue Marble</Title>

<SRS>EPSG:4326</SRS>

<FormatList><Format current="1">image/png</Format></FormatList>

</Layer>

Hmmm. Did your vector layers disappear? Opacity issues, right? Move

the Blue Marble layer to the top of the list, and refresh your browser.

Better? Good. (See Figure 8.5, on the next page.)

Now that we have several layers interacting, we might want to go back

and play with the SLDs a bit more. Maybe you’d like to turn off the fill

color in the U.S. and Canadian data layers. Maybe you want to tweak

the borders to bright yellow so that they stand out against the dark

Blue Marble background. The possibilities are endless.

Unfortunately, finding WMS servers on the Web is as hit or miss as

finding the raw data. The upside is that once you’ve found a server,

integrating it is a breeze (as we just demonstrated). And asking whether

a website supports WMS is a pretty unambiguous question. Either it

does or it doesn’t. For example, you can pull data from TerraServer-

USA via WMS.5

A couple of good directories of WMS services are available. Refractions

Research6 (the folks behind PostGIS) uses the Google Web API to har-

2. http://www.weather.gov/xml/

3. http://mesonet.agron.iastate.edu/ogc/

4. http://onearth.jpl.nasa.gov/

5. http://terraserver.microsoft.com/WebServices.aspx

6. http://www.refractions.net/white_papers/ogcsurvey/index.php

CLICK HERE to purchase this book now.

http://www.weather.gov/xml/
http://mesonet.agron.iastate.edu/ogc/
http://onearth.jpl.nasa.gov/
http://terraserver.microsoft.com/WebServices.aspx
http://www.refractions.net/white_papers/ogcsurvey/index.php
http://www.pragmaticprogrammer.com/titles/sdgis

OPENLAYERS 192

Figure 8.5: Pulling in data layers from remote servers

vest servers from the across the Web. ExploreOurPla.net7 offers a big

generated listing of WMS servers as well.

Take this opportunity to poke around these listings and find some other

interesting data layers. Knowing that you are just a copy and paste

away from a new data set makes the power of OGC interfaces manifest.

8.2 OpenLayers

Why introduce another Ajax mapping framework? Nothing is intrinsi-

cally wrong with Mapbuilder. There are, however, a couple of reasons

why I find OpenLayers8 an attractive alternative:

• I can create a map in significantly fewer lines of code using a single

file instead of three.

7. http://exploreourpla.net/gis/wms-servers/

8. http://openlayers.org/

CLICK HERE to purchase this book now.

http://exploreourpla.net/gis/wms-servers/
http://openlayers.org/
http://www.pragmaticprogrammer.com/titles/sdgis

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style, and continue to garner awards

and rave reviews. As development gets more and more difficult, the Pragmatic Program-

mers will be there with more titles and products to help you stay on top of your game.

Visit Us Online
GIS for Web Developers Home Page

http://pragmaticprogrammer.com/titles/sdgis

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragmaticprogrammer.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragmaticprogrammer.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragmaticprogrammer.com/news

Check out the latest pragmatic developments in the news.

Buy the Book
If you liked this PDF, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragmaticprogrammer.com/titles/sdgis.

Contact Us
Phone Orders: 1-800-699-PROG (+1 919 847 3884)

Online Orders: www.pragmaticprogrammer.com/catalog

Customer Service: orders@pragmaticprogrammer.com

Non-English Versions: translations@pragmaticprogrammer.com

Pragmatic Teaching: academic@pragmaticprogrammer.com

Author Proposals: proposals@pragmaticprogrammer.com

http://pragmaticprogrammer.com/titles/sdgis
http://pragmaticprogrammer.com/updates
http://pragmaticprogrammer.com/community
http://pragmaticprogrammer.com/news
pragmaticprogrammer.com/titles/sdgis
www.pragmaticprogrammer.com/catalog

	Contents
	Preface
	Acknowledgments

	Introduction
	Demystifying GIS
	Finding Free Data Sources and Applications
	Becoming a GIS Programmer
	What Are You Getting Yourself Into?

	Vectors
	Raw Materials
	Raster Data
	Vector Data
	Types of Vector Data
	What Data Is Available?
	Know Your File Formats
	Anatomy of a Shapefile
	The Downloadable States of America
	Downloading a Viewer
	Styling Your Layers
	Viewing Multiple Basemap Layers
	More Data, Please
	More International Data, Please
	When Good Data Goes Bad
	Saving Your Map in ArcExplorer
	Conclusion

	Projections
	The Round Earth
	Cartesian Planes
	What Is a Projection?
	Changing Projections in ArcExplorer
	What Does Round Really Mean, Anyway?
	Coordinate Reference Systems
	Getting Your Data Layers Aligned
	Reprojection Utilities
	Conclusion

	Rasters
	Getting Started with Raster Data
	Terraserver-USA: Another Source of Free Raster Imagery
	Mosaics and Tessellation
	Temporal Analysis
	Panchromatic vs. Multispectral
	Scale and Resolution
	Orthorectification
	Downloading Free Rasters
	Conclusion

	Spatial Databases
	Why Bother with a Spatial Database?
	Installing PostgreSQL and PostGIS
	Adding Spatial Fields
	Inserting Spatial Data
	Querying Spatial Data
	Introspection of Spatial Data
	Importing Data
	Manipulating Data
	Exporting Data
	Indexing Data
	Spatial Queries
	Visualizing Data
	Conclusion

	Creating OGC Web Services
	Sharing the Wealth
	OGC SOA for GIS
	Installing GeoServer
	Adding Shapefiles Using the GUI
	Adding Shapefiles Manually
	Adding PostGIS Layers
	Styling with SLD
	Conclusion

	Using OGC Web Services
	Understanding WMS
	WMS GetCapabilities
	WMS GetMap
	Understanding WFS
	WFS GetCapabilities
	WFS DescribeFeatureType
	WFS GetFeature
	Filtering WFS GetFeature Requests
	Conclusion

	OGC Clients
	Mapbuilder
	OpenLayers
	uDig
	Conclusion

	Bringing It All Together
	From CSV to SQL
	Geocoding Your Data
	Adding PostGIS Fields
	Setting Up OGC Services
	Tiling vs. Styling
	Creating a Slippy Map
	Beyond the Web: 3D Viewers
	Conclusion

	Mac/Linux Installation
	Installing GDAL/Proj/Geos
	Installing PostgreSQL and PostGIS
	LibTIFF and LibGeoTIFF

	Installing Groovy
	Unix, Linux, and Mac OS X
	Windows

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

