
Extracted from:

Groovy Recipes
Greasing the Wheels of Java

This PDF file contains pages extracted from Groovy Recipes, published by the Pragmatic

Bookshelf. For more information or to purchase a paperback or PDF copy, please visit

http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This is

available only in online versions of the books. The printed versions are black and white.

Pagination might vary between the online and printer versions; the content is otherwise

identical.

Copyright © 2008The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any

means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragprog.com

Beta
Book

Agile publishing for agile developers

The book you’re reading is still under development. As part of our

Beta book program, we’re releasing this copy well before we ordinarily

would. That way you’ll be able to get this content a couple of months

before it’s available in finished form, and we’ll get feedback to make

the book even better. The idea is that everyone wins!

Be warned. The book has not had a full technical edit, so it will con-

tain errors. It has not been copyedited, so it will be full of typos. And

there’s been no effort spent doing layout, so you’ll find bad page

breaks, overlong lines, incorrect hyphenations, and all the other ugly

things you wouldn’t expect to see in a finished book. We can’t be held

liable if you use this book to try to create a spiffy application and you

somehow end up with a strangely shaped farm implement instead.

Despite all this, we think you’ll enjoy it!

Throughout this process you’ll be able to download updated PDFs

from your account on pragprog.com. When the book is finally ready,

you’ll get the final version (and subsequent updates). In the mean-

time, we’d appreciate you sending us your feedback on this book at

http://books.pragprog.com/titles/sdgrvr/errata.

Thank you for taking part in this experiment!

Andy Hunt

pragprog.com
http://books.pragprog.com/titles/sdgrvr/errata

Chapter 10

Web Services
Web services are everywhere these days. Once we as an industry figured

out that XML travels over HTTP as well as HTML, we entered a new

age of service-oriented architecture (SOA). This new way of grabbing

data from remote sources means that developers must understand the

mechanics of low-level TCP/IP and HTTP as well as the various higher-

level XML dialects out in the wild: SOAP, REST, and XML-RPC. Luckily,

Groovy helps us on all fronts.

In this chapter, we start with the low-level basics of how to determine

our local TCP/IP address and domain name and those of remote sys-

tems. We move up the stack to HTTP—learning how to GET, POST, PUT,

and DELETE programmatically. We end the chapter with examples of how

to send and receive SOAP messages, XML-RPC messages, and RESTful

requests. We’ll even parse a bit of comma-separated value (CSV) data

just for old-times’ sake.

10.1 Finding Our Local IP Address and Name

InetAddress.localHost.hostAddress

===> 63.246.7.76

InetAddress.localHost.hostName

===> myServer

InetAddress.localHost.canonicalHostName

===> www.aboutgroovy.com

Before we can communicate with anyone else, it always helps knowing

about ourselves. In this example, we discover our IP address, our local

host name, and the DNS name that the rest of the world knows us as.

FINDING OUR LOCAL IP ADDRESS AND NAME 154

The InetAddress class comes to us from the java.net package. We can-

not directly instantiate an InetAddress class (def addr = new InetAddress())

because the constructor is private. We can, however, use a couple of

different static methods to return a well-formed InetAddress. The getLo-

calHost() method for getting local information is discussed here; getBy-

Name() and getAllByName() for getting remote information are discussed

in Section 10.2, Finding a Remote IP Address and Domain Name, on the

following page.

The getLocalHost() method returns an InetAddress that represents the

localhost or the hardware on which it is running. As discussed in Sec-

tion 5.2, Getter and Setter Shortcut Syntax, on page 72, getLocalHost()

can be shortened to localHost in Groovy. Once we have a handle to local-

Host, we can call getHostAddress() to get our IP address or getHostName()

to get the local machine name. This name is the private name of the

system, as opposed to the name registered in DNS for the rest of the

world to see. Calling getCanonicalHostName() performs a DNS lookup.

Of course, as discussed in Section 6.4, Running a Shell Command, on

page 89, the usual command-line tools that ship with our operating

system are just an execute() away. They might not be as easy to parse

as the InetAddress methods, but as we can see they expose quite a bit

more detail.

// available on all operating systems

"hostname".execute().text

===> myServer

// on Unix/Linux/Mac OS X

println "ifconfig".execute().text

===>

en2: flags=8963<UP,BROADCAST,SMART,RUNNING,PROMISC,SIMPLEX,MULTICAST> mtu 1500

inet6 fe80::21c:42ff:fe00:0%en2 prefixlen 64 scopeid 0x8

inet 10.37.129.3 netmask 0xffffff00 broadcast 10.37.129.255

ether 00:1c:42:00:00:00

media: autoselect status: active

supported media: autoselect

// on Windows

println "ipconfig /all".execute().text

===>

Windows IP Configuration

Host Name : scottdavis1079

Primary Dns Suffix :

Node Type : Unknown

IP Routing Enabled. : No

WINS Proxy Enabled. : No

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/sdgrvr

FINDING A REMOTE IP ADDRESS AND DOMAIN NAME 155

Ethernet adapter Local Area Connection:

Connection-specific DNS Suffix . :

Description : Parallels Network Adapter

Physical Address. : 00-61-20-5C-3B-B9

Dhcp Enabled. : Yes

Autoconfiguration Enabled : Yes

IP Address. : 10.211.55.3

Subnet Mask : 255.255.255.0

Default Gateway : 10.211.55.1

DHCP Server : 10.211.55.1

DNS Servers : 10.211.55.1

Lease Obtained. : Tuesday, October 09, 2007 2:53:02 PM

Lease Expires : Tuesday, October 16, 2007 2:53:02 PM

10.2 Finding a Remote IP Address and Domain Name

InetAddress.getByName("www.aboutgroovy.com")

===> www.aboutgroovy.com/63.246.7.76

InetAddress.getAllByName("www.google.com").each{println it}

===>

www.google.com/64.233.167.99

www.google.com/64.233.167.104

www.google.com/64.233.167.147

InetAddress.getByName("www.google.com").hostAddress

===> 64.233.167.99

InetAddress.getByName("64.233.167.99").canonicalHostName

===> py-in-f99.google.com

In addition to returning information about the local machine, InetAd-

dress can be used to find out about remote systems. getByName() returns

a well-formed InetAddress object that represents the remote system. get-

ByName() accepts either a domain name (for example, www.aboutgroovy.com)

or an IP address (for example, 64.233.167.99). Once we have a handle

to the system, we can ask for its hostAddress and its canonicalHostName.

Sometimes a DNS name can resolve to many different IP addresses.

This is especially true for busy websites that load-balance the traffic

among many physical servers. If a DNS name resolves to more than

one IP address, getByName() will return the first one in the list, whereas

getAllByName() will return all of them.

Of course, the usual command-line tools for asking about remote sys-

tems are available to us as well:

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/sdgrvr

MAKING AN HTTP GET REQUEST 156

// on Unix/Linux/Mac OS X

println "dig www.aboutgroovy.com".execute().text

===>

; <<>> DiG 9.3.4 <<>> www.aboutgroovy.com

;; global options: printcmd

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 55649

;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 2, ADDITIONAL: 2

;; QUESTION SECTION:

;www.aboutgroovy.com. IN A

;; ANSWER SECTION:

www.aboutgroovy.com. 300 IN A 63.246.7.76

;; AUTHORITY SECTION:

aboutgroovy.com. 82368 IN NS ns1.contegix.com.

aboutgroovy.com. 82368 IN NS ns2.contegix.com.

;; ADDITIONAL SECTION:

ns1.contegix.com. 11655 IN A 63.246.7.200

ns2.contegix.com. 11655 IN A 63.246.22.100

;; Query time: 204 msec

;; SERVER: 66.174.92.14#53(66.174.92.14)

;; WHEN: Tue Oct 9 15:16:16 2007

;; MSG SIZE rcvd: 130

// on Windows

println "nslookup www.aboutgroovy.com".execute().text

===>

Server: UnKnown

Address: 10.211.55.1

Name: www.aboutgroovy.com

Address: 63.246.7.76

10.3 Making an HTTP GET Request

def page = new URL("http://www.aboutgroovy.com").text

===>

<html><head><title>...

new URL("http://www.aboutgroovy.com").eachLine{line ->

println line

}

===>

<html>

<head>

<title>

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/sdgrvr

MAKING AN HTTP GET REQUEST 157

...

The simplest way to get the contents of an HTML page is to call getText()

on the URL. This allows us to store the entire response in a String vari-

able. If the page is too big to do this comfortably, we can also iterate

through the response line by line using eachLine().

Groovy adds a toURL() method to java.lang.String, allowing us to make

identical requests using a slightly more streamlined syntax:

"http://www.aboutgroovy.com".toURL().text

"http://www.aboutgroovy.com".toURL().eachLine{...}

In Section 11.11, Adding Methods to a Class Dynamically (ExpandoMeta-

Class), on page 199, we’ll see how to streamline this to the point where

we can simply call "http://www.aboutgroovy.com".get().

Processing a Request Based on the HTTP Response Code

def url = new URL("http://www.aboutgroovy.com")

def connection = url.openConnection()

if(connection.responseCode == 200){

println connection.content.text

}

else{

println "An error occurred:"

println connection.responseCode

println connection.responseMessage

}

Calling getText() directly on the URL object means that we expect every-

thing to go perfectly—no connection timeouts, no 404s, and so on.

Although we should be commend on our optimism, if we want to write

slightly more fault-tolerant code, then we should call openConnection()

on the URL. This returns a java.net.URLConnection object that will allow

us to do a bit more detailed work with the URL. connection.content.text

returns the same information as url.text while allowing us to do more

introspection on the response—connection.responseCode for the 200 or

the 404; connection.responseMessage for the OK or the File Not Found.

Getting HTTP Response Metadata

def url = new URL("http://www.aboutgroovy.com")

def connection = url.openConnection()

connection.responseCode

===> 200

connection.responseMessage

===> OK

connection.contentLength

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/sdgrvr

MAKING AN HTTP GET REQUEST 158

===> 4216

connection.contentType

===> text/html

connection.date

===> 1191250061000

connection.expiration

===> 0

connection.lastModified

===> 0

connection.headerFields.each{println it}

===>

Content-Length=[4216]

Set-Cookie=[JSESSIONID=3B2DE7CBDAE3D58EC46D5A8DF5AF89D1; Path=/]

Date=[Mon, 01 Oct 2007 14:47:41 GMT]

null=[HTTP/1.1 200 OK]

Server=[Apache-Coyote/1.1]

Content-Type=[text/html]

Once we have a handle to the URLConnection, we have full access to the

accompanying response metadata. In addition to the responseCode and

responseMessage, we can ask for things such as the contentLength and

the contentType and can even iterate over each response header one by

one.

Creating a Convenience GET Class

class Get{

String url

String queryString

URLConnection connection

String text

String getText(){

def thisUrl = new URL(this.toString())

connection = thisUrl.openConnection()

if(connection.responseCode == 200){

return connection.content.text

}

else{

return "Something bad happened\n" +

"URL: " + this.toString() + "\n" +

connection.responseCode + ": " +

connection.responseMessage

}

}

String toString(){

return url + "?" + queryString

}

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/sdgrvr

MAKING AN HTTP GET REQUEST 159

}

def get = new Get(url:"http://search.yahoo.com/search")

get.queryString = "p=groovy"

println get

===> http://search.yahoo.com/search?p=groovy

println get.text

===> <html><head>...

get.url = "http://www.yahoo.com/no.such.page"

println get.text

===>

Something bad happened

URL: http://www.yahoo.com/no.such.page?p=groovy

404: Not Found

Up to this point we’ve been writing some pretty procedural1 code. It

certainly gets the job done, but it suffers just a wee bit in terms of lack

of reusability. (Don’t you dare suggest that “copy and paste” is a valid

type of reuse. You’re a good object-oriented programmer—how could

you even think such a thing?) This custom Get class wraps everything

we’ve learned up to this point into something that can be reused. It

has a nice simple interface and hides enough of the HttpConnection

complexity to make it worth our time.

Now, nothing can compare to the simplicity of "http://www.aboutgroovy.com".toURL().text.

On the opposite end of the spectrum is the Jakarta Commons Http-

Client2—a great library that is far more complete than anything I could

put together on my own. The drawback, of course, is adding yet another

dependency to your project. Our custom Get class splits the difference

nicely. It is slightly more robust than "".toURL().text, and yet it is imple-

mented in pure Groovy so we don’t have to worry about JAR bloat in

our classpath.

One more thing: the Get class adds support for a QueryString. This is

a collection of name/value pairs that can be appended to the end of

an URL to further customize it. See Section 10.4, Working with QueryS-

trings, on the following page for more information.

RESTful GET Requests

"http://search.yahooapis.com/WebSearchService/V1/webSearch?

appid=YahooDemo&query=groovy&results=10".toURL().text

1. http://en.wikipedia.org/wiki/Procedural_programming

2. http://jakarta.apache.org/httpcomponents/httpcomponents-client

CLICK HERE to purchase this book now.

http://en.wikipedia.org/wiki/Procedural_programming
http://jakarta.apache.org/httpcomponents/httpcomponents-client
http://www.pragprog.com/titles/sdgrvr

WORKING WITH QUERYSTRINGS 160

//alternately, using our Get class

def get = new Get()

get.url = "http://search.yahooapis.com/WebSearchService/V1/webSearch"

get.queryString = "appid=YahooDemo&query=groovy&results=10"

def results = get.text

There is a type of web service called RESTful web services. REST stands

for Representational State Transfer.3 Although there are many differ-

ing interpretations of what it means to be truly RESTful, it is gener-

ally accepted that an HTTP GET request that returns XML results (as

opposed to HTML or some other data format) constitutes the simplest

form of a RESTful web service.

Yahoo offers a RESTful API4 that returns query results in XML. This

query returns the top ten hits for the search term groovy. For the result

of this query and how to parse it, see Section 10.12, Parsing Yahoo

Search Results as XML, on page 177.

10.4 Working with QueryStrings

"http://search.yahoo.com/search?p=groovy".toURL().text

A QueryString allows you to make more complex HTTP GET requests

by adding name/value pairs to the end of the address. Now instead of

just asking for a static page at http://search.yahoo.com, we can make a

dynamic query for all pages that contain the word groovy. The web is

transformed from a simple distributed filesystem to a fully programmable

web.5 The mechanics of programmatically making an HTTP GET request

don’t change—it is no more complicated that what we were doing in

Section 10.3, Making an HTTP GET Request, on page 156. However,

the semantics of using QueryStrings opens up a whole new world of

programmatic possibilities.

For example, complicated web pages like a Google map showing the

Denver International Airport can be captured in a single URL. This

means we can hyperlink it, bookmark it, or email it to a friend sim-

ply by clicking Link to This Page in the upper-right corner of the page.

Each element in the QueryString represents a different aspect of the

map: ll for the latitude/longitude center point of the map (39.87075,-

3. http://en.wikipedia.org/wiki/Representational_State_Transfer

4. http://developer.yahoo.com/search/web/V1/webSearch.html

5. http://www.programmableweb.com/

CLICK HERE to purchase this book now.

http://en.wikipedia.org/wiki/Representational_State_Transfer
http://developer.yahoo.com/search/web/V1/webSearch.html
http://www.programmableweb.com/
http://www.pragprog.com/titles/sdgrvr

WORKING WITH QUERYSTRINGS 161

104.694214), z for the zoom level (11), t for the type (h, or hybrid), and

so on.

"http://maps.google.com/maps?f=q&hl=en&geocode=&time=&date=&ttype=

&q=dia&sll=37.0625,-95.677068&sspn=34.038806,73.125&ie=UTF8

&ll=39.87075,-104.694214&spn=0.2577,0.571289&z=11&iwloc=addr&om=1&t=h"

.toURL().text

Building the QueryString from a List

def queryString = []

queryString << "n=" + URLEncoder.encode("20")

queryString << "vd=" + URLEncoder.encode("m3")

queryString << "vl=" + URLEncoder.encode("lang_en")

queryString << "vf=" + URLEncoder.encode("pdf")

queryString << "p=" + URLEncoder.encode("groovy grails")

def address = "http://search.yahoo.com/search"

def url = new URL(address + "?" + queryString.join("&"))

println url

===>

http://search.yahoo.com/search?n=20&vd=m3&vl=lang_en&vf=pdf&p=groovy+grails

println url.text

Often we’ll be tasked with assembling a well-formed QueryString from

an arbitrary collection of data values. The secret is to make sure the

values are URLEncoded6 (“foo bar baz” ==> foo+bar+baz), while the

name portion (nonsense=) remains plain text. If we try to URLEncode

the name and the value as a single string (“nonsense=foo bar baz”), the

equals sign (=) will get converted to “%3D”, and your web server will

most likely reject the request.

In this example, we create a List of name/value pairs, ensuring that

only the value gets URLEncoded using the java.net.URLEncoder. Later

when we need the well-formed QueryString, we call queryString.join("&").

As we saw in Section 4.14, Join, on page 60, this returns the list as a

single string with each element joined by the string we passed in as the

parameter.

This particular QueryString was built by performing an advanced Yahoo

search and cherry-picking the interesting name/value pairs from the

resulting URL. n returns 20 results instead of the default 10. vd lim-

its the results to those posted in the past three months. vl returns only

6. http://en.wikipedia.org/wiki/Urlencode

CLICK HERE to purchase this book now.

http://en.wikipedia.org/wiki/Urlencode
http://www.pragprog.com/titles/sdgrvr

WORKING WITH QUERYSTRINGS 162

English pages. vf filters the results for only PDF documents. And finally,

p looks for results that mention either groovy or grails.

Building the QueryString from a Map

def map = [n:20, vf:"pdf", p:"groovy grails"]

def list = []

map.each{name,value->

list << "$name=" + URLEncoder.encode(value.toString())

}

println list.join("&")

===> n=20&vf=pdf&p=groovy+grails

Groovy Maps are a great way to represent QueryStrings since both nat-

urally have name/value pairs. In this example, we still use a temporary

List to store the URLEncoded values and a join("&") to put them together

at the last minute.

There is one edge case that keeps this from being a 100% solution.

QueryStrings are allowed to have duplicate named elements, whereas

Maps enforce unique names.

http://localhost/order?book=Groovy+Recipes&book=Groovy+In+Action

If you can live with this limitation, then Maps are the perfect solution.

If you need to support duplicate named elements, see Section 10.4,

Creating a Convenience QueryString Class for more information.

Creating a Convenience QueryString Class

class QueryString{

Map params = [:]

//this constructor allows you to pass in a Map

QueryString(Map params){

if(params){

this.params.putAll(params)

}

}

//this method allows you to add name/value pairs

void add(String name, Object value){

params.put(name, value)

}

//this method returns a well-formed QueryString

String toString(){

def list = []

params.each{name,value->

list << "$name=" + URLEncoder.encode(value.toString())

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/sdgrvr

PARSING AN RSS FEED 180

10.14 Parsing an RSS Feed

def rssFeed = "http://aboutgroovy.com/podcast/rss".toURL().text

Getting an RSS feed is as simple as making a plain old HTTP GET

request.

//Response:

<rss xmlns:itunes="http://www.itunes.com/dtds/podcast-1.0.dtd" version="2.0">

<channel>

<title>About Groovy Podcasts</title>

<link>http://aboutGroovy.com</link>

<language>en-us</language>

<copyright>2007 AboutGroovy.com</copyright>

<itunes:subtitle>

Your source for the very latest Groovy and Grails news

</itunes:subtitle>

<itunes:author>Scott Davis</itunes:author>

<itunes:summary>About Groovy interviews</itunes:summary>

<description>About Groovy interviews</description>

<itunes:owner>

<itunes:name>Scott Davis</itunes:name>

<itunes:email>scott@aboutGroovy.com</itunes:email>

</itunes:owner>

<itunes:image href="http://aboutgroovy.com/images/aboutGroovy3.png" />

<itunes:category text="Technology" />

<itunes:category text="Java" />

<itunes:category text="Groovy" />

<itunes:category text="Grails" />

<item>

<title>AboutGroovy Interviews Neal Ford</title>

<itunes:author>Scott Davis</itunes:author>

<itunes:subtitle></itunes:subtitle>

<itunes:summary>Neal Ford of ThoughtWorks is truly a polyglot programmer.

In this exclusive interview, Neal opines on Groovy, Ruby, Java, DSLs, and

the future of programming languages. Opinionated and entertaining, Neal

doesn't pull any punches. Enjoy.

</itunes:summary>

<enclosure url="http://aboutgroovy.com/podcasts/NealFord.mp3"

length="33720522" type="audio/mpeg" />

<guid>http://aboutgroovy.com/podcasts/NealFord.mp3</guid>

<pubDate>2007-04-17T01:15:00-07:00</pubDate>

<itunes:duration>44:19</itunes:duration>

<itunes:keywords>java,groovy,grails</itunes:keywords>

</item>

</channel>

</rss>

def rss = new XmlSlurper().parseText(rssFeed)

rss.channel.item.each{

println it.title

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/sdgrvr

PARSING AN RSS FEED 181

println it.pubDate

println it.enclosure.@url

println it.duration

println "-----"

}

===>

AboutGroovy Interviews Neal Ford

2007-04-17T01:15:00-07:00

http://aboutgroovy.com/podcasts/NealFord.mp3

44:19

AboutGroovy Interviews Jeremy Rayner

2007-03-13T01:18:00-07:00

http://aboutgroovy.com/podcasts/JeremyRayner.mp3

50:54

...

XmlSlurper allows us to avoid dealing with the namespaces and extract

the pertinent fields. See Section 8.9, Parsing an XML Document with

Namespaces, on page 131 for more information.

Yahoo has a number of RSS feeds that offer more than simple blog syn-

dication. See http://developer.yahoo.com/weather/ and http://developer.yahoo.com/traffic/

for a couple of examples of RSS feeds that send real data down the wire.

CLICK HERE to purchase this book now.

http://developer.yahoo.com/weather/
http://developer.yahoo.com/traffic/
http://www.pragprog.com/titles/sdgrvr

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style, and continue to garner awards

and rave reviews. As development gets more and more difficult, the Pragmatic Program-

mers will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Groovy Recipes’s Home Page

http://pragprog.com/titles/sdgrvr

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments in the news.

Buy the Book
If you liked this PDF, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com/titles/sdgrvr.

Contact Us
Phone Orders: 1-800-699-PROG (+1 919 847 3884)

Online Orders: www.pragprog.com/catalog

Customer Service: orders@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

http://pragprog.com/titles/sdgrvr
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/sdgrvr
www.pragprog.com/catalog

	Contents
	Preface
	Introduction
	Groovy, the Way Java Should Be
	Stripping Away the Verbosity
	Groovy: The Blue Pill or the Red Pill?
	Road Map

	Getting Started
	Installing Groovy
	Running a Groovy Script (groovy)
	Compiling Groovy (groovyc)
	Running the Groovy Shell (groovysh)
	Running the Groovy Console (groovyConsole)
	Running Groovy on a Web Server (Groovlets)
	Groovy + Eclipse
	Groovy + IntelliJ IDEA
	Groovy + TextMate
	Groovy + [Insert Your IDE or Text Editor Here]

	New to Groovy
	Automatic Imports
	Optional Semicolons
	Optional Parentheses
	Optional Return Statements
	Optional Datatype Declaration (Duck Typing)
	Optional Exception Handling
	Operator Overloading
	Safe Dereferencing (?)
	Autoboxing
	Groovy Truth
	Embedded Quotes
	Heredocs (Triple Quotes)
	GStrings
	List Shortcuts
	Map shortcuts
	Ranges
	Closures and Blocks

	Java and Groovy Integration
	GroovyBeans (aka POGOs)
	Autogenerated Getters and Setters
	getProperty and setProperty
	Making Attributes Read-Only
	Constructor Shortcut Syntax
	Optional Parameters/Default Values
	Private Methods
	Calling Groovy from Java
	Calling Java from Groovy
	Interfaces in Groovy and Java
	The Groovy Joint Compiler
	Compiling Our Project with Ant
	Compiling Our Project with Maven

	Groovy from the Command Line
	Running Uncompiled Groovy Scripts
	Shebanging Groovy
	Accepting Command-Line Arguments
	Running a Shell Command
	Using Shell Wildcards in Groovy Scripts
	Running Multiple Shell Commands at Once
	Waiting for a Shell Command to Finish Before Continuing
	Getting System Properties
	Getting Environment Variables
	Evaluating a String
	Calling Another Groovy Script
	Groovy on the Fly (groovy -e)
	Including JARs at the Command Line

	File Tricks
	Listing All Files in a Directory
	Reading the Contents of a File
	Writing Text to a File
	Copying Files
	Using AntBuilder to Copy a File
	Using AntBuilder to Copy a Directory
	Moving/Renaming Files
	Deleting Files
	Creating a ZIP File/Tarball
	Unzipping/Untarring Files

	Parsing XML
	The ``I'm in a Hurry'' Guide to Parsing XML
	Understanding the Difference Between XmlParser and XmlSlurper
	Parsing XML Documents
	Dealing with XML Attributes
	Getting the Body of an XML Element
	Dealing with Mixed-Case Element Names
	Dealing with Hyphenated Element Names
	Navigating Deeply Nested XML
	Parsing an XML Document with Namespaces
	Populating a GroovyBean from XML

	Writing XML
	The ``I'm in a Hurry'' Guide to Creating an XML Document
	Creating Mixed-Case Element Names
	Creating Hyphenated Element Names
	Creating Namespaced XML Using MarkupBuilder
	Understanding the Difference Between MarkupBuilder and StreamingMarkupBuilder
	Creating Parts of the XML Document Separately
	Creating Namespaced XML Using StreamingMarkupBuilder
	Printing Out the XML Declaration
	Printing Out Processing Instructions
	Printing Arbitrary Strings (Comments, CDATA)
	Writing StreamingMarkupBuilder Output to a File
	StreamingMarkupBuilder at a Glance
	Creating HTML on the Fly
	Converting CSV to XML
	Converting JDBC ResultSets to XML

	Web Services
	Finding Our Local IP Address and Name
	Finding a Remote IP Address and Domain Name
	Making an HTTP GET Request
	Working with QueryStrings
	Making an HTTP POST Request
	Making an HTTP PUT Request
	Making an HTTP DELETE Request
	Making a RESTful Request
	Making a CSV Request
	Making a SOAP Request
	Making an XML-RPC Request
	Parsing Yahoo Search Results as XML
	Parsing an Atom Feed
	Parsing an RSS Feed

	Metaprogramming
	Discovering the Class
	Discovering the Fields of a Class
	Checking for the Existence of a Field
	Discovering the Methods of a Class
	Checking for the Existence of a Method
	Creating a Field Pointer
	Creating a Method Pointer
	Calling Methods That Don't Exist (invokeMethod)
	Creating an Expando
	Adding Methods to a Class Dynamically (Categories)
	Adding Methods to a Class Dynamically (ExpandoMetaClass)

	Working with Grails
	Installing Grails
	Creating Your First Grails App
	Understanding Grails Environments
	Running Grails on a Different Port
	Generating a WAR
	Changing Databases
	Changing the Home Page
	Understanding Controllers and Views
	Dynamic Scaffolding
	Validating Our Data
	Managing Table Relationships
	Mapping Classes to Legacy Databases

	Grails and Web Services
	Returning XML
	Returning JSON
	Returning an Excel Spreadsheet
	Setting Up an Atom Feed
	Setting Up an RSS Feed for Podcasts
	Installing Plug-Ins

	Index

