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Chapter 6

Concurrency
Concurrency is a fact of life and, increasingly, a fact of software. There

are several reasons that programs need to do more than one thing at a

time:

• Expensive computations may need to execute in parallel on mul-

tiple cores (or multiple boxes) in order to complete in a timely

manner.

• Tasks that are blocked waiting for a resource should stand down

and let other tasks use available processors.

• User interfaces need to remain responsive while performing long-

running tasks.

• Operations that are logically independent are easier to implement

if the platform can recognize and take advantage of their

independence.

The challenge of concurrency is not making multiple things happen

at once. It is easy enough to launch a bunch of threads or a bunch

of processes. Rather, the challenge is coordinating multiple activities

happening at the same time.

Clojure provides a powerful concurrency library, consisting of four APIs

that enforce different concurrency models: refs, atoms, agents, and

vars.

• Refs manage coordinated, synchronous changes to shared state.

• Atoms manage uncoordinated, synchronous changes to shared

state.

• Agents manage asynchronous changes to shared state.

• Vars manage thread-local state.
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Refs are updated within transactions managed by Clojure’s Software

Transactional Memory (STM) system. Agents also have the option of

interacting with STM.

Each of these APIs is discussed in this chapter. At the end of the chap-

ter, we will develop two sample applications:

• The Snake game demonstrates how to divide an application model

into immutable and mutable components.

• Continuing the Lancet example, we will add a thread-safe runonce

capability to make sure each Lancet target runs only once per

build.

Before we dive in, let’s review the problem these APIs were designed to

solve: the difficulty of using locks.

6.1 The Problem with Locks

A big challenge for concurrent programs is managing mutable state. If

mutable state can be accessed concurrently, then as a programmer you

must be careful to protect that access. In most programming languages

today, development proceeds as follows:

• Mutable state is the default, so mutable state is commingled

through all layers of the codebase.

• Concurrency is implemented using independent flows of execution

called threads.

• If mutable state can be reached by multiple threads, you must

protect that state with locks that allow only one thread to pass at

a time.

Choosing what and where to lock is a difficult task. If you get it wrong,

all sorts of bad things can happen. Race conditions between threads

can corrupt data. Deadlocks can stop an entire program from function-

ing at all. Java Concurrency in Practice [Goe06] covers these and other

problems, plus their solutions, in detail. It is a terrific book, but it is

difficult to read it and not be asking yourself “Is there another way?”

Yes, there is. In Clojure, immutable state is the default. Most data is

immutable. The small parts of the codebase that truly benefit from

mutability are distinct and must explicitly select one or more concur-

rency APIs. Using these APIs, you can split your models into two layers:
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• A functional model that has no mutable state. Most of your code

will normally be in this layer, which is easier to read, easier to test,

and easier to run concurrently.

• A mutable model for the parts of the application that you find more

convenient to deal with using mutable state (despite its

disadvantages).

To manage the mutable model, you can use Clojure’s concurrency libra-

ry. In addition, you can still use locks and all the low-level APIs for

Java concurrency. If after reviewing Clojure’s options you decide that

Java’s concurrency APIs are a better fit, use Clojure’s Java interop to

call them from your Clojure program. Consult Java Concurrency in Prac-

tice [Goe06] for API details.

Now, let’s get started working with mutable state in Clojure, using what

is probably the most important part of the Clojure concurrency library:

refs.

6.2 Refs and Software Transactional Memory

Most objects in Clojure are immutable. When you really want muta-

ble data, you must be explicit about it, such as by creating a mutable

reference (ref) to an immutable object. You create a ref with this:

(ref initial-state)

For example, you could create a reference to the current song in your

music playlist:

(def current-track (ref "Mars, the Bringer of War"))
⇒ #'user/current-track

The ref wraps and protects access to its internal state. To read the

contents of the reference, you can call deref:

(deref reference)

The deref function can be shortened to the @ reader macro. Try using

both deref and @ to dereference current-track:

(deref current-track)
⇒ "Mars, the Bringer of War"

@current-track
⇒ "Mars, the Bringer of War"
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