
Extracted from:

Programming Clojure

This PDF file contains pages extracted from Programming Clojure, published by the

Pragmatic Bookshelf. For more information or to purchase a paperback or PDF copy,

please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This is

available only in online versions of the books. The printed versions are black and white.

Pagination might vary between the online and printer versions; the content is otherwise

identical.

Copyright © 2009 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any

means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragprog.com




Many of the designations used by manufacturers and sellers to distinguish their prod-

ucts are claimed as trademarks. Where those designations appear in this book, and The

Pragmatic Programmers, LLC was aware of a trademark claim, the designations have

been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The

Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher

assumes no responsibility for errors or omissions, or for damages that may result from

the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team

create better software and have more fun. For more information, as well as the latest

Pragmatic titles, please visit us at

http://www.pragprog.com

Copyright © 2009 Stuart Halloway.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-

ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 1-934356-33-6

ISBN-13: 978-1-934356-33-3

Printed on acid-free paper.

P2.0 printing, September 2009

Version: 2009-10-27

http://www.pragprog.com


Chapter 6

Concurrency
Concurrency is a fact of life and, increasingly, a fact of software. There

are several reasons that programs need to do more than one thing at a

time:

• Expensive computations may need to execute in parallel on mul-

tiple cores (or multiple boxes) in order to complete in a timely

manner.

• Tasks that are blocked waiting for a resource should stand down

and let other tasks use available processors.

• User interfaces need to remain responsive while performing long-

running tasks.

• Operations that are logically independent are easier to implement

if the platform can recognize and take advantage of their

independence.

The challenge of concurrency is not making multiple things happen

at once. It is easy enough to launch a bunch of threads or a bunch

of processes. Rather, the challenge is coordinating multiple activities

happening at the same time.

Clojure provides a powerful concurrency library, consisting of four APIs

that enforce different concurrency models: refs, atoms, agents, and

vars.

• Refs manage coordinated, synchronous changes to shared state.

• Atoms manage uncoordinated, synchronous changes to shared

state.

• Agents manage asynchronous changes to shared state.

• Vars manage thread-local state.



THE PROBLEM WITH LOCKS 180

Refs are updated within transactions managed by Clojure’s Software

Transactional Memory (STM) system. Agents also have the option of

interacting with STM.

Each of these APIs is discussed in this chapter. At the end of the chap-

ter, we will develop two sample applications:

• The Snake game demonstrates how to divide an application model

into immutable and mutable components.

• Continuing the Lancet example, we will add a thread-safe runonce

capability to make sure each Lancet target runs only once per

build.

Before we dive in, let’s review the problem these APIs were designed to

solve: the difficulty of using locks.

6.1 The Problem with Locks

A big challenge for concurrent programs is managing mutable state. If

mutable state can be accessed concurrently, then as a programmer you

must be careful to protect that access. In most programming languages

today, development proceeds as follows:

• Mutable state is the default, so mutable state is commingled

through all layers of the codebase.

• Concurrency is implemented using independent flows of execution

called threads.

• If mutable state can be reached by multiple threads, you must

protect that state with locks that allow only one thread to pass at

a time.

Choosing what and where to lock is a difficult task. If you get it wrong,

all sorts of bad things can happen. Race conditions between threads

can corrupt data. Deadlocks can stop an entire program from function-

ing at all. Java Concurrency in Practice [Goe06] covers these and other

problems, plus their solutions, in detail. It is a terrific book, but it is

difficult to read it and not be asking yourself “Is there another way?”

Yes, there is. In Clojure, immutable state is the default. Most data is

immutable. The small parts of the codebase that truly benefit from

mutability are distinct and must explicitly select one or more concur-

rency APIs. Using these APIs, you can split your models into two layers:

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/shcloj


REFS AND SOFTWARE TRANSACTIONAL MEMORY 181

• A functional model that has no mutable state. Most of your code

will normally be in this layer, which is easier to read, easier to test,

and easier to run concurrently.

• A mutable model for the parts of the application that you find more

convenient to deal with using mutable state (despite its

disadvantages).

To manage the mutable model, you can use Clojure’s concurrency libra-

ry. In addition, you can still use locks and all the low-level APIs for

Java concurrency. If after reviewing Clojure’s options you decide that

Java’s concurrency APIs are a better fit, use Clojure’s Java interop to

call them from your Clojure program. Consult Java Concurrency in Prac-

tice [Goe06] for API details.

Now, let’s get started working with mutable state in Clojure, using what

is probably the most important part of the Clojure concurrency library:

refs.

6.2 Refs and Software Transactional Memory

Most objects in Clojure are immutable. When you really want muta-

ble data, you must be explicit about it, such as by creating a mutable

reference (ref) to an immutable object. You create a ref with this:

(ref initial-state)

For example, you could create a reference to the current song in your

music playlist:

(def current-track (ref "Mars, the Bringer of War"))
⇒ #'user/current-track

The ref wraps and protects access to its internal state. To read the

contents of the reference, you can call deref:

(deref reference)

The deref function can be shortened to the @ reader macro. Try using

both deref and @ to dereference current-track:

(deref current-track)
⇒ "Mars, the Bringer of War"

@current-track
⇒ "Mars, the Bringer of War"

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/shcloj


The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers

will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Programming Clojure’s Home Page

http://pragprog.com/titles/shcloj

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com/titles/shcloj.

Contact Us
Online Orders: www.pragprog.com/catalog

Customer Service: support@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

Contact us: 1-800-699-PROG (+1 919 847 3884)

http://pragprog.com/titles/shcloj
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/shcloj
www.pragprog.com/catalog



