
Extracted from:

Programming Clojure

This PDF file contains pages extracted from Programming Clojure, published by the

Pragmatic Bookshelf. For more information or to purchase a paperback or PDF copy,

please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This is

available only in online versions of the books. The printed versions are black and white.

Pagination might vary between the online and printer versions; the content is otherwise

identical.

Copyright © 2009 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any

means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragprog.com




Many of the designations used by manufacturers and sellers to distinguish their prod-

ucts are claimed as trademarks. Where those designations appear in this book, and The

Pragmatic Programmers, LLC was aware of a trademark claim, the designations have

been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The

Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher

assumes no responsibility for errors or omissions, or for damages that may result from

the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team

create better software and have more fun. For more information, as well as the latest

Pragmatic titles, please visit us at

http://www.pragprog.com

Copyright © 2009 Stuart Halloway.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-

ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 1-934356-33-6

ISBN-13: 978-1-934356-33-3

Printed on acid-free paper.

P2.0 printing, September 2009

Version: 2009-10-27

http://www.pragprog.com


Preface
Clojure is a dynamic programming language for the Java Virtual Ma-

chine (JVM), with a compelling combination of features:

• Clojure is elegant. Clojure’s clean, careful design lets you write

programs that get right to the essence of a problem, without a lot

of clutter and ceremony.

• Clojure is Lisp reloaded. Clojure has the power inherent in Lisp

but is not constrained by the history of Lisp.

• Clojure is a functional language. Data structures are immutable,

and most functions are free from side effects. This makes it easier

to write correct programs and to compose large programs from

smaller ones.

• Clojure simplifies concurrent programming. Many languages build

a concurrency model around locking, which is difficult to use cor-

rectly. Clojure provides several alternatives to locking: software

transactional memory, agents, atoms, and dynamic variables.

• Clojure embraces Java. Calling from Clojure to Java is direct and

fast, with no translation layer.

• Unlike many popular dynamic languages, Clojure is fast. Clojure is

written to take advantage of the optimizations possible on modern

JVMs.

Many other languages cover some of the features described in the pre-

vious list. My personal quest for a better JVM language included signif-

icant time spent with Ruby, Python, and JavaScript, plus less intensive

exploration of Scala, Groovy, and Fan. These are all good languages,

and they all simplify writing code on the Java platform.

But for me, Clojure stands out. The individual features listed earlier are

powerful and interesting. Their clean synergy in Clojure is compelling.



WHO THIS BOOK IS FOR 17

We will cover all these features and more in Chapter 1, Getting Started,

on page 23.

Who This Book Is For

Clojure is a powerful, general-purpose programming language. As such,

this book is for experienced programmers looking for power and ele-

gance. This book will be useful for anyone with experience in a modern

programming language such as C#, Java, Python, or Ruby.

Clojure is built on top of the Java Virtual Machine, and it is fast. This

book will be of particular interest to Java programmers who want the

expressiveness of a dynamic language without compromising on per-

formance.

Clojure is helping to redefine what features belong in a general-purpose

language. If you program in Lisp, use a functional language such as

Haskell, or write explicitly concurrent programs, you will enjoy Clo-

jure. Clojure combines ideas from Lisp, functional programming, and

concurrent programming and makes them more approachable to pro-

grammers seeing these ideas for the first time.

Clojure is part of a larger phenomenon. Languages such as Erlang, F#,

Haskell, and Scala have garnered attention recently for their support of

functional programming and/or their concurrency model. Enthusiasts

of these languages will find much common ground with Clojure.

What Is in This Book

Chapter 1, Getting Started, on page 23, demonstrates Clojure’s elegance

as a general-purpose language, plus the functional style and concur-

rency model that make Clojure unique. It also walks you through instal-

ling Clojure and developing code interactively at the REPL.

Chapter 2, Exploring Clojure, on page 47, is a breadth-first overview of

all of Clojure’s core constructs. After this chapter, you will be able to

read most day-to-day Clojure code.

Chapter 3, Working with Java, on page 81, shows you how to call Java

from Clojure and call Clojure from Java. You will see how to take Clo-

jure straight to the metal and get Java-level performance.

The next two chapters cover functional programming. Chapter 4, Uni-

fying Data with Sequences, on page 113, shows how all data can be

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/shcloj


HOW TO READ THIS BOOK 18

unified under the powerful sequence metaphor. Chapter 5, Functional

Programming, on page 149, shows you how to write functional code in

the same style used by the sequence library.

Chapter 6, Concurrency, on page 179, delves into Clojure’s concurrency

model. Clojure provides four powerful models for dealing with concur-

rency, plus all of the goodness of Java’s concurrency libraries.

Chapter 7, Macros, on page 213, shows off Lisp’s signature feature.

Macros take advantage of the fact that Clojure code is data to provide

metaprogramming abilities that are difficult or impossible in anything

but a Lisp.

Chapter 8, Multimethods, on page 246, covers Clojure’s answer to poly-

morphism. Polymorphism usually means “take the class of the first

argument and dispatch a method based on that.” Clojure’s multimeth-

ods let you choose any function of all the arguments and dispatch based

on that.

There is already a thriving Clojure community. Chapter 9, Clojure in

the Wild, on page 267, introduces third-party libraries for automated

testing, data access, and web development. You will see how to use

these libraries to build Snippet, a database-backed web application for

posting and reading code snippets.

At the end of most chapters there is an extended example demonstrat-

ing the ideas from that chapter in the context of a larger application:

Lancet. Lancet3 is a Clojure-based build system that works with Apache

Ant. Starting from scratch, you will build a usable subset of Lancet by

the end of the book.

Appendix A, on page 286, lists editor support options for Clojure, with

links to setup instructions for each.

How to Read This Book

All readers should begin by reading the first two chapters in order. Pay

particular attention to Section 1.1, Why Clojure?, on page 23, which

provides an overview of Clojure’s advantages.

3. http://github.com/stuarthalloway/lancet

CLICK HERE to purchase this book now.

http://github.com/stuarthalloway/lancet
http://www.pragprog.com/titles/shcloj


HOW TO READ THIS BOOK 19

Experiment continuously. Clojure provides an interactive environment

where you can get immediate feedback; see Section 1.2, Using the REPL,

on page 34 for more information.

After you read the first two chapters, skip around as you like. But read

Chapter 4, Unifying Data with Sequences, on page 113 before you read

Chapter 6, Concurrency, on page 179. These chapters lead you from

Clojure’s immutable data structures to a powerful model for writing

correct concurrency programs.

As you make the move to longer code examples in the later chapters,

make sure that you use an editor that does Clojure indentation for you.

Appendix A, on page 286, will point you to common editor options.

For Functional Programmers

• Clojure’s approach to FP strikes a balance between academic puri-

ty and the realities of execution on the current generation of JVMs.

Read Chapter 5, Functional Programming, on page 149 carefully

to understand how Clojure idioms differ from languages such as

Haskell.

• The concurrency model of Clojure (Chapter 6, Concurrency, on

page 179) provides several explicit ways to deal with side effects

and state and will make FP appealing to a broader audience.

For Java/C# Programmers

• Read Chapter 2, Exploring Clojure, on page 47 carefully. Clojure

has very little syntax (compared to Java), and we cover the ground

rules fairly quickly.

• Pay close attention to macros in Chapter 7, Macros, on page 213.

These are the most alien part of Clojure, when viewed from a Java

or C# perspective.

For Lisp Programmers

• Some of Chapter 2, Exploring Clojure, on page 47 will be review,

but read it anyway. Clojure preserves the key features of Lisp, but

it breaks with Lisp tradition in several places, and they are covered

here.

• Pay close attention to the lazy sequences in Chapter 5, Functional

Programming, on page 149.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/shcloj


NOTATION CONVENTIONS 20

• Get an Emacs mode for Clojure that makes you happy before

working through the code examples in later chapters.

For Perl/Python/Ruby Programmers

• Read Chapter 6, Concurrency, on page 179 carefully. Intraprocess

concurrency is very important in Clojure.

• Embrace macros (Chapter 7, Macros, on page 213). But do not

expect to easily translate metaprogramming idioms from your lan-

guage into macros. Remember always that macros execute at read

time, not runtime.

Notation Conventions

The following notation conventions are used throughout the book.

Literal code examples use the following font:

(+ 2 2)

The result of executing a code example is preceded by a ->:

(+ 2 2)
⇒ 4

Where console output cannot easily be distinguished from code and

results, it is preceded by a pipe character (|):

(println "hello")

| hello
⇒ nil

When introducing a Clojure form for the first time, I will show the gram-

mar for the form like this:

(example-fn required-arg)

(example-fn optional-arg?)

(example-fn zero-or-more-arg*)

(example-fn one-or-more-arg+)

(example-fn & collection-of-variable-args)

The grammar is informal, using ?, *, +, and & to document different

argument-passing styles, as shown previously.

Clojure code is organized into libs (libraries). Where examples in the

book depend on a library that is not part of the Clojure core, I document

that dependency with a use form:

(use '[lib-name :only (var-names+)])

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/shcloj


WEB RESOURCES AND FEEDBACK 21

This form of use brings in only the names in var-names, making each

function’s origin clear. For example, a commonly used function is str-

join, from the clojure.contrib.str-utils library:

(use '[clojure.contrib.str-utils :only (str-join)])

(str-join "-" ["hello", "clojure"])
⇒ "hello-clojure"

Clojure returns nil from a successful call to use. For brevity, this is

omitted from the example listings.

While reading the book, you will enter code in an interactive environ-

ment called the REPL. The REPL prompt looks like this:

user=>

The user before the prompt tells the namespace you are currently work-

ing in. For most of the book’s examples, the current namespace is irrel-

evant. Where the namespace is irrelevant, I will use the following syntax

for interaction with the REPL:

(+ 2 2) ; input line without namespace prompt
⇒ 4 ; return value

In those few instances where the current namespace is important, I will

use this:

user=> (+ 2 2) ; input line with namespace prompt
⇒ 4 ; return value

Web Resources and Feedback

Programming Clojure’s official home on the Web is the Programming Clo-

jure home page4 at the Pragmatic Bookshelf website. From there you

can order electronic or paper copies of the book and download sam-

ple code. You can also offer feedback by submitting errata entries5 or

posting in the forum6 for the book.

In addition to the book, I have written a number of articles about Clo-

jure. These are all available under the “clojure” tag at the Relevance

blog.7

4. http://www.pragprog.com/titles/shcloj/programming-clojure

5. http://www.pragprog.com/titles/shcloj/errata

6. http://forums.pragprog.com/forums/91

7. http://blog.thinkrelevance.com/tags/clojure

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/shcloj/programming-clojure
http://www.pragprog.com/titles/shcloj/errata
http://forums.pragprog.com/forums/91
http://blog.thinkrelevance.com/tags/clojure
http://www.pragprog.com/titles/shcloj


DOWNLOADING SAMPLE CODE 22

Downloading Sample Code

The sample code for the book is available from one of two locations:

• The Programming Clojure home page8 links to the official copy of

the source code and is updated to match each release of the book.

• The Programming Clojure git repository9 is updated in real time.

This is the latest, greatest code and may sometimes be ahead of

the prose in the book.

Individual examples are in the examples directory, unless otherwise

noted. The Lancet examples have their own separate lancet directory.

Throughout the book, listings begin with their filename, set apart from

the actual code by a gray background. For example, the following listing

comes from examples/preface.clj:

Download examples/preface.clj

(println "hello")

If you are reading the book in PDF form, you can click the little gray

box preceding a code listing and download that listing directly.

With the sample code in hand, you are ready to get started. We will

begin by meeting the combination of features that make Clojure unique.

8. http://www.pragprog.com/titles/shcloj

9. http://github.com/stuarthalloway/programming-clojure

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/shcloj/code/examples/preface.clj
http://www.pragprog.com/titles/shcloj
http://github.com/stuarthalloway/programming-clojure
http://www.pragprog.com/titles/shcloj


The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers

will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Programming Clojure’s Home Page

http://pragprog.com/titles/shcloj

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com/titles/shcloj.

Contact Us
Online Orders: www.pragprog.com/catalog

Customer Service: support@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

Contact us: 1-800-699-PROG (+1 919 847 3884)

http://pragprog.com/titles/shcloj
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/shcloj
www.pragprog.com/catalog



