
Extracted from:

Programming Clojure
Second Edition

This PDF file contains pages extracted from Programming Clojure, published by
the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printer versions; the

content is otherwise identical.

Copyright © 2010 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

The team that produced this book includes:

Michael Swaine (editor)
Potomac Indexing, LLC (indexer)
Kim Wimpsett (copyeditor)
David J Kelly (typesetter)
Janet Furlow (producer)
Juliet Benda (rights)
Ellie Callahan (support)

Copyright © 2012 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-934356-86-9
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—April 2012

http://pragprog.com

Clojure is a dynamic programming language for the Java Virtual Machine
(JVM), with a compelling combination of features:

• Clojure is elegant. Clojure’s clean, careful design lets you write programs
that get right to the essence of a problem, without a lot of clutter and
ceremony.

• Clojure is Lisp reloaded. Clojure has the power inherent in Lisp but is not
constrained by the history of Lisp.

• Clojure is a functional language. Data structures are immutable, and most
functions are free from side effects. This makes it easier to write correct
programs and to compose large programs from smaller ones.

• Clojure simplifies concurrent programming. Many languages build a con-
currency model around locking, which is difficult to use correctly. Clojure
provides several alternatives to locking: software transactional memory,
agents, atoms, and dynamic variables.

• Clojure embraces Java. Calling from Clojure to Java is direct and fast,
with no translation layer.

• Unlike many popular dynamic languages, Clojure is fast. Clojure is written
to take advantage of the optimizations possible on modern JVMs.

Many other languages cover some of the features described in the previous
list. Of all these languages, Clojure stands out. The individual features listed
earlier are powerful and interesting. Their clean synergy in Clojure is com-
pelling. We will cover all these features and more in Chapter 1, Getting Started,
on page ?.

Who This Book Is For

Clojure is a powerful, general-purpose programming language. As such, this
book is for experienced programmers looking for power and elegance. This
book will be useful for anyone with experience in a modern programming
language such as C#, Java, Python, or Ruby.

Clojure is built on top of the Java Virtual Machine, and it is fast. This book
will be of particular interest to Java programmers who want the expressiveness
of a dynamic language without compromising on performance.

Clojure is helping to redefine what features belong in a general-purpose lan-
guage. If you program in Lisp, use a functional language such as Haskell, or
write explicitly concurrent programs, you will enjoy Clojure. Clojure combines

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/shcloj2
http://forums.pragprog.com/forums/shcloj2

ideas from Lisp, functional programming, and concurrent programming and
makes them more approachable to programmers seeing these ideas for the
first time.

Clojure is part of a larger phenomenon. Languages such as Erlang, F#,
Haskell, and Scala have garnered attention recently for their support of
functional programming or their concurrency model. Enthusiasts of these
languages will find much common ground with Clojure.

What Is in This Book

Chapter 1, Getting Started, on page ? demonstrates Clojure’s elegance as a
general-purpose language, plus the functional style and concurrency model
that make Clojure unique. It also walks you through installing Clojure and
developing code interactively at the REPL.

Chapter 2, Exploring Clojure, on page ? is a breadth-first overview of all of
Clojure’s core constructs. After this chapter, you will be able to read most
day-to-day Clojure code.

The next two chapters cover functional programming. Chapter 3, Unifying
Data with Sequences, on page ? shows how all data can be unified under
the powerful sequence metaphor.

Chapter 4, Functional Programming, on page ? shows you how to write
functional code in the same style used by the sequence library.

Chapter 5, State, on page ? delves into Clojure’s concurrency model. Clojure
provides four powerful models for dealing with concurrency, plus all of the
goodness of Java’s concurrency libraries.

Chapter 6, Protocols and Datatypes, on page ? walks through records, types,
and protocols in Clojure. These concepts were introduced in Clojure 1.2.0
and enhanced in 1.3.0.

Chapter 7, Macros, on page ? shows off Lisp’s signature feature. Macros
take advantage of the fact that Clojure code is data to provide metaprogram-
ming abilities that are difficult or impossible in anything but a Lisp.

Chapter 8, Multimethods, on page ? covers one of Clojure’s answers to
polymorphism. Polymorphism usually means “take the class of the first
argument and dispatch a method based on that.” Clojure’s multimethods let
you choose any function of all the arguments and dispatch based on that.

vi •

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/shcloj2
http://forums.pragprog.com/forums/shcloj2

Chapter 9, Java Down and Dirty, on page ? shows you how to call Java from
Clojure and call Clojure from Java. You will see how to take Clojure straight
to the metal and get Java-level performance.

Finally, Chapter 10, Building an Application, on page ? provides a view into
a complete Clojure workflow. You will build an application from scratch,
working through solving the various parts to a problem and thinking about
simplicity and quality. You will use a set of helpful Clojure libraries to produce
and deploy a web application.

Appendix 1, Editor Support, on page ? lists editor support options for Clojure,
with links to setup instructions for each.

How to Read This Book

All readers should begin by reading the first two chapters in order. Pay par-
ticular attention to Section 1.1, Why Clojure?, on page ?, which provides an
overview of Clojure’s advantages.

Experiment continuously. Clojure provides an interactive environment where
you can get immediate feedback; see Using the REPL, on page ? for more
information.

After you read the first two chapters, skip around as you like. But read
Chapter 3, Unifying Data with Sequences, on page ? before you read Chapter
5, State, on page ?. These chapters lead you from Clojure’s immutable data
structures to a powerful model for writing correct concurrency programs.

As you make the move to longer code examples in the later chapters, make
sure you use an editor that provides Clojure indentation for you. Appendix
1, Editor Support, on page ? will point you to common editor options. If you
can, try to use an editor that supports parentheses balancing, such as Emacs’
paredit mode or the CounterClockWise plug-in for eclipse. This feature will
be a huge help as you are learning to program in Clojure.

For Functional Programmers

• Clojure’s approach to FP strikes a balance between academic purity and
the realities of execution on the current generation of JVMs. Read Chapter
4, Functional Programming, on page ? carefully to understand how Clojure
idioms differ from languages such as Haskell.

• The concurrency model of Clojure (Chapter 5, State, on page ?) provides
several explicit ways to deal with side effects and state and will make FP
appealing to a broader audience.

• Click HERE to purchase this book now. discuss

How to Read This Book • vii

http://pragprog.com/titles/shcloj2
http://forums.pragprog.com/forums/shcloj2

For Java/C# Programmers

• Read Chapter 2, Exploring Clojure, on page ? carefully. Clojure has very
little syntax (compared to Java or C#), and we cover the ground rules
fairly quickly.

• Pay close attention to macros in Chapter 7, Macros, on page ?. These
are the most alien part of Clojure when viewed from a Java or C# perspec-
tive.

For Lisp Programmers

• Some of Chapter 2, Exploring Clojure, on page ? will be review, but read
it anyway. Clojure preserves the key features of Lisp, but it breaks with
Lisp tradition in several places, and they are covered here.

• Pay close attention to the lazy sequences in Chapter 4, Functional Program-
ming, on page ?.

• Get an Emacs mode for Clojure that makes you happy before working
through the code examples in later chapters.

For Perl/Python/Ruby Programmers

• Read Chapter 5, State, on page ? carefully. Intraprocess concurrency is
very important in Clojure.

• Embrace macros (Chapter 7, Macros, on page ?). But do not expect to
easily translate metaprogramming idioms from your language into macros.
Remember always that macros execute at read time, not runtime.

Notation Conventions

The following notation conventions are used throughout the book.

Literal code examples use the following font:

(+ 2 2)

The result of executing a code example is preceded by ->.

(+ 2 2)
-> 4

Where console output cannot easily be distinguished from code and results,
it is preceded by a pipe character (|).

(println "hello")

viii •

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/shcloj2
http://forums.pragprog.com/forums/shcloj2

| hello
-> nil

When introducing a Clojure form for the first time, we will show the grammar
for the form like this:

(example-fn required-arg)
(example-fn optional-arg?)
(example-fn zero-or-more-arg*)
(example-fn one-or-more-arg+)
(example-fn & collection-of-variable-args)

The grammar is informal, using ?, *, +, and & to document different argument-
passing styles, as shown previously.

Clojure code is organized into libs (libraries). Where examples in the book
depend on a library that is not part of the Clojure core, we document that
dependency with a use or require form:

(use '[lib-name :only (var-names+)])
(require '[lib-name :as alias])

This form of use brings in only the names in var-names, while require creates an
alias, making each function’s origin clear. For example, a commonly used
function is file, from the clojure.java.io library:

(use '[clojure.java.io :only (file)])
(file "hello.txt")
-> #<File hello.txt>

or the require-based counterpart:

(require '[clojure.java.io :as io])
(io/file "hello.txt")
-> #<File hello.txt>

Clojure returns nil from a successful call to use. For brevity, this is omitted
from the example listings.

While reading the book, you will enter code in an interactive environment
called the REPL. The REPL prompt looks like this:

user=>

The user before the prompt tells the namespace you are currently working in.
For most of the book’s examples, the current namespace is irrelevant. Where
the namespace is irrelevant, we will use the following syntax for interaction
with the REPL:

(+ 2 2) ; input line without namespace prompt
-> 4 ; return value

• Click HERE to purchase this book now. discuss

Notation Conventions • ix

http://pragprog.com/titles/shcloj2
http://forums.pragprog.com/forums/shcloj2

In those few instances where the current namespace is important, we will
use this:

user=> (+ 2 2) ; input line with namespace prompt-> 4 ; return value

Web Resources and Feedback

Programming Clojure’s official home on the Web is the Programming Clojure
home page1 at the Pragmatic Bookshelf website. From there you can order
electronic or paper copies of the book and download sample code. You can
also offer feedback by submitting errata entries2 or posting in the forum3 for
the book.

Downloading Sample Code

The sample code for the book is available from one of two locations:

• The Programming Clojure home page4 links to the official copy of the source
code and is updated to match each release of the book.

• The Programming Clojure git repository5 is updated in real time. This is
the latest, greatest code and may sometimes be ahead of the prose in the
book.

Individual examples are in the examples directory, unless otherwise noted.

Throughout the book, listings begin with their filename, set apart from the
actual code by a gray background. For example, the following listing comes
from src/examples/preface.clj:

src/examples/preface.clj
(println "hello")

If you are reading the book in PDF form, you can click the little gray box
preceding a code listing and download that listing directly.

With the sample code in hand, you are ready to get started. We will begin by
meeting the combination of features that make Clojure unique.

1. http://www.pragprog.com/titles/shcloj2/programming-clojure
2. http://www.pragprog.com/titles/shcloj2/errata
3. http://forums.pragprog.com/forums/207
4. http://www.pragprog.com/titles/shcloj2
5. http://github.com/stuarthalloway/programming-clojure

x •

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/shcloj2/code/src/examples/preface.clj
http://www.pragprog.com/titles/shcloj2/programming-clojure
http://www.pragprog.com/titles/shcloj2/errata
http://forums.pragprog.com/forums/207
http://www.pragprog.com/titles/shcloj2
http://github.com/stuarthalloway/programming-clojure
http://pragprog.com/titles/shcloj2
http://forums.pragprog.com/forums/shcloj2

