
Extracted from:

Programming Clojure, Third Edition

This PDF file contains pages extracted from Programming Clojure, Third Edition,
published by the Pragmatic Bookshelf. For more information or to purchase a

paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2018 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Programming Clojure, Third Edition

Alex Miller
with Stuart Halloway

and Aaron Bedra

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Managing Editor: Brian MacDonald
Supervising Editor: Jacquelyn Carter
Copy Editor: Paula Robertson
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2018 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-246-6
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—February 2018

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Functional programming (FP) is a big topic, not to be learned in 21 days1 or
in a single chapter of a book. Nevertheless, you can reach a first level of
effectiveness using lazy and recursive techniques in Clojure fairly quickly,
and that is what we’ll accomplish this chapter.

We’ll start with a quick overview of FP terms and concepts and an introduction
to the guidelines of Clojure FP that we’ll refer to throughout the chapter. Next
we’ll experience the power of lazy sequences by working through a series of
implementations of the Fibonacci numbers. As cool as lazy sequences are,
you rarely need to construct them yourself, and we’ll see better ways to recast
problems to solve them directly with the sequence library.

We’ll close with some advanced techniques and see some scenarios where
eager transformations have advantages over lazy sequences.

Functional Programming Concepts
Functional programming leads to code that is easier to write, read, test, and
reuse. Here’s how it works.

Pure Functions
Programs are built out of pure functions. A pure function has no side effects;
that is, it doesn’t depend on anything but its arguments, and its only influence
on the outside world is through its return value.

Mathematical functions are pure functions. Two plus two is four, no matter
where or when you ask. Also, asking doesn’t do anything other than return
the answer.

Program output is decidedly impure. For example, when you println, you change
the outside world by pushing data onto an output stream. Also, the results
of println depend on state outside the function: the standard output stream
might be redirected, closed, or broken.

If you start writing pure functions, you’ll quickly realize that pure functions
and immutable data go hand in hand. Consider the following mystery function:

(defn mystery [input]
(if input data-1 data-2))

If mystery is a pure function, then regardless of what it does, data-1 and data-2 have
to be immutable! Otherwise, changes to the data would cause the function
to return different values for the same input.

1. http://norvig.com/21-days.html

• Click HERE to purchase this book now. discuss

http://norvig.com/21-days.html
http://pragprog.com/titles/shcloj3
http://forums.pragprog.com/forums/shcloj3

A single piece of mutable data can ruin the game, rendering an entire call
chain of functions impure. So, once you make a commitment to writing pure
functions, you end up using immutable data in large sections of your
application.

Persistent Data Structures
Immutable data is critical to Clojure’s approach to both FP and state. On the
FP side, pure functions cannot have side effects, such as updating the state
of a mutable object. On the state side, Clojure’s reference types require
immutable data structures to implement their concurrency guarantees.

The fly in the ointment is performance. When all data is immutable, “update”
translates into “create a copy of the original data, plus my changes.” This will
use up memory quickly! Imagine that you have an address book that takes
up 5 MB of memory. Then, you make five small updates. With a mutable
address book, you are still consuming about 5 MB of memory. But if you have
to copy the whole address book for each update, then an immutable version
would balloon to 25 MB!

Clojure’s data structures don’t take this naive “copy everything” approach.
Instead, all Clojure data structures are persistent. In this context, persistent
means that the data structures preserve old copies of themselves by efficiently
sharing structure between older and newer versions.

Structural sharing is easiest to visualize with a list. Consider list a with two
elements:

(def a '(1 2))
-> #'user/a

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/shcloj3
http://forums.pragprog.com/forums/shcloj3

Then from a, you can create a b with an additional element added:

(def b (cons 0 a))
-> #'user/b

b can reuse all of a’s structure, rather than have its own private copy:

 0 1

b

 2

a

All of Clojure’s data structures share structure where possible. For structures
other than simple lists, the mechanics are more complex, of course. If you’re
interested in the details, check out the following articles:

• “Ideal Hash Trees”2 by Phil Bagwell
• “Understanding Clojure’s PersistentVector Implementation”3 by Karl

Krukow

Laziness and Recursion
Functional programs make heavy use of recursion and laziness. A recursion
occurs when a function calls itself, either directly or indirectly. With laziness,
an expression’s evaluation is postponed until it’s actually needed. Evaluating
a lazy expression is called realizing the expression.

In Clojure, functions and expressions are not lazy. However, sequences are
generally lazy. Because so much Clojure programming is sequence manipu-
lation, you get many of the benefits of a fully lazy language. In particular, you
can build complex expressions using lazy sequences and then “pay” only for
the elements you actually need.

Lazy techniques imply pure functions. You never have to worry about when
to call a pure function, since it always returns the same thing. Impure func-
tions, on the other hand, do not play well with lazy techniques. As a program-
mer, you must explicitly control when an impure function is called, because
if you call it at some other time, it may behave differently!

Referential Transparency
Laziness depends on the ability to replace a function call with its result at
any time. Functions that have this ability are called referentially transparent,

2. http://lampwww.epfl.ch/papers/idealhashtrees.pdf
3. http://tinyurl.com/clojure-persistent-vector

• Click HERE to purchase this book now. discuss

Functional Programming Concepts • 7

http://lampwww.epfl.ch/papers/idealhashtrees.pdf
http://tinyurl.com/clojure-persistent-vector
http://pragprog.com/titles/shcloj3
http://forums.pragprog.com/forums/shcloj3

because calls to such functions can be replaced without affecting the behavior
of the program. In addition to laziness, referentially transparent functions
can also benefit from the following:

• Memoization, automatic caching of results
• Automatic parallelization, moving function evaluation to another processor

or machine

Pure functions are referentially transparent by definition. Most other functions
are not referentially transparent, and those that are must be proven safe by
code review.

Benefits of FP
Well, that is a lot of terminology, and we promised it would make your code
easier to write, read, test, and compose. Here’s how.

You’ll find functional code easier to write because the relevant information is
right in front of you, in a function’s argument list. You don’t have to worry
about global scope, session scope, application scope, or thread scope. Func-
tional code is easier to read for exactly the same reason.

Code that is easier to read and write is going to be easier to test, but functional
code brings an additional benefit for testing. As projects get large, it often
takes a lot of effort to set up the right environment to execute a test. This is
much less of a problem with functional code, because there is no relevant
environment beyond the function’s arguments.

Functional code improves reuse. To reuse code, you must be able to do the
following:

• Find and understand a piece of useful code.
• Compose the reusable code with other code.

The readability of functional code helps you find and understand the functions
you need, but the benefit for composing code is even more compelling.

Composability is a hard problem. For years, programmers have used encap-
sulation to try to create composable code. Encapsulation creates a firewall,
providing access to data only through a public API.

Encapsulation helps, but it’s nowhere near enough. Even with encapsulated
objects, there are far too many surprising interactions when you try to com-
pose entire systems. The problem is those darn side effects. Impure functions
violate encapsulation, because they let the outside world reach in (invisibly!)
and change the behavior of your code. Pure functions, on the other hand, are

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/shcloj3
http://forums.pragprog.com/forums/shcloj3

truly encapsulated and composable. Put them anywhere you want in a system,
and they will always behave in the same way.

Guidelines for Use
Clojure takes a unique approach to FP that strikes a balance between aca-
demic purity and the reality of running well on the JVM. That means there’s
a lot to learn all at once. But fear not. If you’re new to FP, the following
guidelines will help on your initial steps toward FP mastery, Clojure-style:

1. Avoid direct recursion. The JVM can’t optimize recursive calls, and Clojure
programs that recurse will blow their stack.

2. Use recur when you’re producing scalar values or small, fixed sequences.
Clojure will optimize calls that use an explicit recur.

3. When producing large or variable-sized sequences, always be lazy. (Do
not recur.) Then, your callers can consume just the part of the sequence
they actually need.

4. Be careful not to realize more of a lazy sequence than you need.

5. Know the sequence library. You can often write code without using recur
or the lazy APIs at all.

6. Subdivide. Divide even simple-seeming problems into smaller pieces, and
you’ll often find solutions in the sequence library that lead to more general,
reusable code.

The last two guidelines are particularly important. If you’re new to FP, you
can translate those to: “Ignore this chapter and just use the techniques in
Chapter 3, Unifying Data with Sequences, on page ? until you hit a wall.”

Now, let’s get started writing functional code.

How to Be Lazy
Before we get to laziness, we first need to delve into recursion as an approach
to enumerating sequences of values.

Functional programs make great use of recursive definitions. A recursive def-
inition consists of two parts:

• A basis, which explicitly enumerates some members of the sequence
• An induction, which provides rules for combining members of the sequence

to produce additional members

• Click HERE to purchase this book now. discuss

How to Be Lazy • 9

http://pragprog.com/titles/shcloj3
http://forums.pragprog.com/forums/shcloj3

Our challenge in this section is converting a recursive definition into working
code. You might do this in several ways:

• A simple recursion, using a function that calls itself in some way to
implement the induction step.

• A tail recursion, using a function calling itself only at the tail end of its
execution. Tail recursion enables an important optimization.

• A lazy sequence that eliminates actual recursion and calculates a value
later, when it’s needed.

Choosing the right approach is important. Implementing a recursive definition
poorly can lead to code that performs terribly, consumes all available stack
and fails, consumes all available heap and fails, or does all of these. In Clojure,
being lazy is often the right approach.

We’ll explore all of these approaches by applying them to the Fibonacci
numbers. Named for the Italian mathematician Leonardo (Fibonacci) of Pisa
(c.1170–c.1250), the Fibonacci numbers were actually known to Indian
mathematicians as far back as 200 BC. The Fibonacci numbers have many
interesting properties, and they crop up again and again in algorithms, data
structures, and even biology.4 The Fibonaccis have a very simple recursive
definition:

• Basis: F0, the zeroth Fibonacci number, is zero. F1, the first Fibonacci
number, is one.

• Induction: For n > 1, Fn equals Fn-1 + Fn-2.

Using this definition, the first 10 Fibonacci numbers are as follows:

(0 1 1 2 3 5 8 13 21 34)

Let’s begin by implementing the Fibonaccis using a simple recursion. The
following Clojure function will return the nth Fibonacci number:

src/examples/functional.clj
; bad ideaLine 1

(defn stack-consuming-fibo [n]2

(cond3

(= n 0) 04

(= n 1) 15

:else (+ (stack-consuming-fibo (- n 1))6

(stack-consuming-fibo (- n 2)))))7

4. http://en.wikipedia.org/wiki/Fibonacci_number

• 10

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/shcloj3/code/src/examples/functional.clj
http://en.wikipedia.org/wiki/Fibonacci_number
http://pragprog.com/titles/shcloj3
http://forums.pragprog.com/forums/shcloj3

Lines 4 and 5 define the basis, and line 6 defines the induction. The imple-
mentation is recursive because stack-consuming-fibo calls itself on lines 6 and 7.

Test that stack-consuming-fibo works correctly for small values of n:

(stack-consuming-fibo 9)
-> 34

Good so far, but there’s a problem calculating larger Fibonacci numbers such
as F1000000:

(stack-consuming-fibo 1000000)
-> StackOverflowError clojure.lang.Numbers.minus (Numbers.java:1837)

Because of the recursion, each call to stack-consuming-fibo for n > 1 begets two
more calls to stack-consuming-fibo. At the JVM level, these calls are translated
into method calls, each of which allocates a data structure called a stack
frame.5

The stack-consuming-fibo creates a depth of stack frames proportional to n, which
quickly exhausts the JVM stack and causes the StackOverflowError shown earlier.
(It also creates a total number of stack frames that’s exponential in n, so its
performance is terrible even when the stack does not overflow.)

Clojure function calls are designated as stack-consuming because they allocate
stack frames that use up stack space. In Clojure, you should almost always
avoid stack-consuming recursion as shown in stack-consuming-fibo.

5. http://tinyurl.com/jvm-spec-toc

• Click HERE to purchase this book now. discuss

How to Be Lazy • 11

http://tinyurl.com/jvm-spec-toc
http://pragprog.com/titles/shcloj3
http://forums.pragprog.com/forums/shcloj3

