
Extracted from:

The dRuby Book
Distributed and Parallel Computing with Ruby

This PDF file contains pages extracted from The dRuby Book, published by the
Pragmatic Bookshelf. For more information or to purchase a paperback or PDF

copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printer versions; the

content is otherwise identical.

Copyright © 2010 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

The team that produced this book includes:

Susannah Pfalzer (editor)
Potomac Indexing, LLC (indexer)
Kim Wimpsett (copyeditor)
David J Kelly (typesetter)
Janet Furlow (producer)
Juliet Benda (rights)
Ellie Callahan (support)

Original Japanese edition:
“dRuby niyoru Bunsan Web Programming” by Masatoshi Seki
Copyright © 2005. Published by Ohmsha, Ltd

This English translation, revised for Ruby 1.9, is copyright © 2012 Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-934356-93-7
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—March 2012

http://pragprog.com

2.2 Design Principles of dRuby

I designed dRuby to extend Ruby method invocation over networks. dRuby
is a library to implement distributed objects in Ruby.

dRuby has the following characteristics:

• Limited to Ruby
• 100 percent written in Ruby
• No IDL required

Let’s look at these concepts a little more closely.

Pure Ruby

dRuby is a distributed object system purely targeted to Ruby. It sounds lim-
iting, but this also means you can run dRuby in any environment where Ruby
can run (see Figure 10, The software layers, on page 6). This is very similar
to Java RMI, which also can run anywhere Java can run.

Figure 11, An example of a system across multiple OSs, on page 6 shows the
architecture of a complex system across different operating systems.

dRuby is written purely in Ruby without using any C extension libraries—
another bonus. Ruby comes with network, thread, and marshaling-related
libraries as part of its standard library, so I was able to write everything in
Ruby. The first version of dRuby had only 160 lines (the current dRuby has
more than 1,700 lines including RDoc), and the core part of the library is still
the same (see The First dRuby, on page 7). The concise codebase of dRuby
demonstrates how easily you can write a complex library by using just Ruby’s
standard libraries.

Feels Like Ruby

I paid special attention to the compatibility between dRuby and Ruby. Many
features of Ruby remain in dRuby, too.

Ruby is very dynamic. You don’t need to use inheritance most of the time
because the variables of Ruby aren’t typed. Ruby looks up methods at execu-
tion time (method invocation time); these characteristics also apply to dRuby.
dRuby doesn’t have type-in variables, and method searches are done at exe-
cution time. Because you don’t need to prepare the list of methods and their
inheritance information, you don’t need to write IDL.

dRuby’s core mission isn’t about changing the behavior of Ruby, apart from
extending Ruby method invocation across networks. With this functionality,

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/sidruby
http://forums.pragprog.com/forums/sidruby

POSIX Windows Mac OS X

Ruby

dRuby

Application

Figure 10—The software layers. Observe where dRuby sits above the operating systems.

WEBrick Div

DivRWiki

Ring

Div

Dip

POSIX Windows Mac OS X

Figure 11—An example of a system across multiple OSs. Div, Ring, Dip, and RWiki are
applications that use dRuby.

you can have as much ease and fun programming in dRuby as you do with
Ruby. For example, you can still use a block for method calls and use
exceptions as well. Other multithreading synchronization methods, such as
Mutex and Queue, are also available remotely, and you can use them to
synchronize multiple processes.

Pass by Reference, Pass by Value

Having said all that, sometimes you need to know the difference between
Ruby and dRuby.

In Ruby, objects are all exchanged by reference when you pass or receive
method arguments, return values, or exceptions.

6 •

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/sidruby
http://forums.pragprog.com/forums/sidruby

The First dRuby

The first version of dRuby was created in 1999 and posted to the Japanese Ruby user
mailing list.a The email is written in Japanese, but you can see some snippets of
source code that look very similar to dRuby now.

Starting drb server.
DRb.start_server('druby://hostname:port', front)
Connecting to the remote server
ro = DRbObject.new(nil, 'druby://server:port')
ro.sample(1, DRbEx.new(2), 3)

The original source code is about 160 lines, and about 50 lines of the core code will
give you clear idea about how dRuby works internally.

class DRbObject
def initialize(obj, uri=nil)

@uri = uri || DRb.uri
@ref = obj.id if obj

end
def method_missing(msg_id, *a)

succ, result = DRbConn.new(@uri).send_message(self, msg_id, *a)
raise result if ! succ
result

end

attr :ref
end

DRbObject acts as a proxy object, so it doesn’t have any methods. Therefore,
method_missing receives all the method calls and sends them to the DRbConn class.

class DRbConn
include DRbProtocol

def initialize(remote_uri)
@host, @port = parse_uri(remote_uri)

end
def send_message(ref, msg_id, *arg)

begin
soc = TCPSocket.open(@host, @port)
send_request(soc, ref, msg_id, *arg)
recv_reply(soc)

ensure
soc.close if soc

end
end

end

DRbConn acts as a TCPSocket server. It transfers the message to the remote server—so
simple. If you’re interested in the internals of dRuby, read the rest of the original code
to get a better idea about the structure of the library before jumping into reading the
current version of dRuby, which is more than 1,700 lines.

a. http://blade.nagaokaut.ac.jp/cgi-bin/scat.rb/ruby/ruby-list/15406

• Click HERE to purchase this book now. discuss

Design Principles of dRuby • 7

http://blade.nagaokaut.ac.jp/cgi-bin/scat.rb/ruby/ruby-list/15406
http://pragprog.com/titles/sidruby
http://forums.pragprog.com/forums/sidruby

In dRuby, objects are exchanged either by reference or by the copy of the
original value. When an object is passed by reference, the operation to the
object will affect the original (like a normal Ruby object). However, when
passed by value, the operation doesn’t affect the original, and the change
stays within the process where the object is modified (see Figure 12, Passing
by reference and passing by value, on page 9).

This difference doesn’t exist in Ruby, and you have to pay special attention
to this when you program with dRuby.

If I really wanted to make dRuby look the same as Ruby, I could have designed
dRuby to always pass by reference. However, remote object method invocation
requires some network overhead, and doing small object operations all via
RMI isn’t effective. It’s vital to pass the copy of the object in certain situations
to increase your application’s performance. Also, if you keep passing by refer-
ence, you’ll never get the actual value from the remote server. Instead, you’ll
be looping forever, trying to find out the object’s state.

It might sound a bit complicated, but don’t worry. You don’t have to specify
whether you plan to pass by value or by reference—dRuby does it for you.
Because dRuby automatically selects the reference method, you don’t have
to write a special method for dRuby.

You’ll see more detail about automatically passing by value or by reference
in Chapter 4, Pass by Reference, Pass by Value, on page ?.

8 •

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/sidruby
http://forums.pragprog.com/forums/sidruby

foo
foo=(obj)
dup

@foo
Foo

foo
foo=(obj)
dup

@foo
Foo

Pass by Reference

Pass by Value

foo
foo=(obj)
dup

@foo
Foo

Reference information
Location and id of original

Clone
Copy of the original
No impact on the original

To pass object "Foo"...

Figure 12—Passing by reference and passing by value

• Click HERE to purchase this book now. discuss

Design Principles of dRuby • 9

http://pragprog.com/titles/sidruby
http://forums.pragprog.com/forums/sidruby

