
Extracted from:

The dRuby Book
Distributed and Parallel Computing with Ruby

This PDF file contains pages extracted from The dRuby Book, published by the
Pragmatic Bookshelf. For more information or to purchase a paperback or PDF

copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printer versions; the

content is otherwise identical.

Copyright © 2010 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

The team that produced this book includes:

Susannah Pfalzer (editor)
Potomac Indexing, LLC (indexer)
Kim Wimpsett (copyeditor)
David J Kelly (typesetter)
Janet Furlow (producer)
Juliet Benda (rights)
Ellie Callahan (support)

Original Japanese edition:
“dRuby niyoru Bunsan Web Programming” by Masatoshi Seki
Copyright © 2005. Published by Ohmsha, Ltd

This English translation, revised for Ruby 1.9, is copyright © 2012 Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-934356-93-7
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—March 2012

http://pragprog.com

In many systems, each thread shares the same memory address space. Sys-
tems can switch the flow of control, but they can’t switch memory space. So,
threads tend to have less overhead and are often called lightweight processes.

With multithreading, you can easily write applications that handle multiple
events, such as a network or GUI application. However, multithreading
causes problems that don’t happen in single-threaded mode.

dRuby-based systems are often composed of multiple processes. When serving
as a server, dRuby has no idea when clients will call the server methods. This
situation is similar to what happens when programming in a multithreaded
environment. In this chapter, we’ll learn about multithreading in Ruby,
communication between threads, and how to apply these techniques when
programming in dRuby.

Before you start this chapter, keep in mind that multithreading is a difficult
topic in general; don’t be surprised if you feel overwhelmed by the number of
topics covered in this chapter. Feel free to skip whenever you like. However,
do read Section 5.4, Passing Objects via Queue, on page ? to understand
how to use Queue to communicate in a multithreaded environment, because
we’ll compare Queue with other concepts in Chapter 6, Coordinating Processes
Using Rinda, on page ? and Chapter 9, Drip: A Stream-Based Storage System,
on page ?.

5.1 dRuby and Multithreading

Multithreading is vital in dRuby. In this section, we’ll take a look at the rela-
tionship between dRuby and multithreading.

Always in Multithreading Mode

dRuby generates threads by first having DRb.start_service generate a server thread
that waits for method calls from other processes. Then, every time the server
thread receives a method call from the client, the server generates a new
thread that takes care of executing the method call.

While the server is handling other remote method calls, it creates a new thread
and executes it when there’s a call from a client.

Let’s see how process A calls process B (see Figure 19, How remote method
calls work, on page 6).

there = DRbObject.new_with_uri('...')
there.foo()

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/sidruby
http://forums.pragprog.com/forums/sidruby

Foo

foo()

Process A Process B

Figure 19—How remote method calls work

When there is a request to process B, then a server thread at DRbServer receives
the request. DRbServer then creates a new method invocation and delegates
the task to it in a separate thread. As soon as it gets delegated, the server
thread comes back and prepares for the next method call (see Figure 20, Im-
plementing a remote method call, on page 7).

Thanks to this mechanism, dRuby can receive different calls and execute
them while it’s in the middle of processing other calls. Let’s think about the
following code:

ary = DRbObject.new_with_uri(..)
ary.each do |x|
x.foo()

end

Because dRuby has no constraints—such as blocking other method calls
while performing a method call—it doesn’t cause a deadlock when two pro-
cesses call each other (see Figure 21, Two processes calling each other, on
page 8). This architecture enables you to call remote methods with block
arguments.

The main goal of dRuby is to extend Ruby’s method invocation to a distributed
environment. I implemented dRuby so that objects can call each other just
as they do in normal Ruby scripts. For this reason, you have to pay particular
attention to multithreading when using dRuby. Always bear in mind that the
server script may receive method calls at any time.

6 •

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/sidruby
http://forums.pragprog.com/forums/sidruby

DRbObject DRbServer

foo()

Process A Process B

foo()

Thread

start

Foo

foo()

The area dRuby
provides as method

invocation

Figure 20—Implementing a remote method call

5.2 Understanding the Thread Class

When a Ruby interpreter executes a script, a main thread starts (see Figure
22, Main thread at start-up, on page 8). The main thread is in charge of
processing the main script. The main thread is invoked in the very beginning,
and when the main thread ends, then the script also ends. The main thread
is the longest-living thread within a script’s life cycle.

Ruby threading works by passing a block to the Thread class. You can pass
parameters to the block by passing arguments in Thread.new.

thread = Thread.new(1,2,3) do |x, y, z|
Operations to be threaded.

end

This creates a “program flow” (see Figure 23, Launching the second thread,
on page 9).

A thread has various states, such as running or sleep. When the thread is waiting
for IO or other threads, then it goes into sleep mode. A thread often goes back
and forth between run and sleep mode and eventually finishes (see Figure 24,
States of a thread, on page 9).

• Click HERE to purchase this book now. discuss

Understanding the Thread Class • 7

http://pragprog.com/titles/sidruby
http://forums.pragprog.com/forums/sidruby

Proc
{...}

Array
[aFoo, ...]

each
{ ... }

yield

yield

yield

Process A Process B

Foo

foo

foo

foo

Figure 21—Two processes calling each other

main thread

Figure 22—Main thread at start-up

When a thread ends, it contains the end state. If the thread was terminated
by an exception, then it will raise an exception when you try to access the
value.

You can check the state of a thread using the alive?, status, and value methods.

8 •

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/sidruby
http://forums.pragprog.com/forums/sidruby

main thread Thread

new

Figure 23—Launching the second thread

start

"run" "sleep"

"aborting"

false or nil

Figure 24—States of a thread

alive?
Returns true or false

status
Returns the following state code:

• Click HERE to purchase this book now. discuss

Understanding the Thread Class • 9

http://pragprog.com/titles/sidruby
http://forums.pragprog.com/forums/sidruby

• "run" running.
• sleep sleeping.
• aborting aborting.
• false finished normally.
• nil terminated by exception.

stop?
Returns true when the thread ended or is asleep.

value
Waits until the thread ends and returns the value. If the thread is already
finished, then it returns the value immediately. If it was terminated by
an exception, then it raises an exception. You can access value at any time,
and an exception will be raised every time you access the value.

value waits and returns the value. If all you want is to wait until the end of
the thread, then you can use the join method. When the join method is called,
it blocks the calling thread until the receiver thread ends (see Figure 25,
Threads waiting to join, on page 11).

To control the state of the thread, you can use the following methods:

exit
Terminate the thread.

wakeup
Change the thread in running mode.

run
Get the thread into running mode. Switch thread.

raise
Raise exception to the thread.

There are no methods to get other threads into sleep mode. If you want to get
your own thread into sleep mode, then you can use the sleep or stop (a class
method of the Thread class) method. If you use the sleep method, then you can
stop the execution up to the specified time (or forever).

You can also investigate all threads within a process with the following class
methods:

Thread.list
Lists all live threads

Thread.main
Returns the main thread

10 •

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/sidruby
http://forums.pragprog.com/forums/sidruby

main thread Thread

new

join

join

Figure 25—Threads waiting to join

Thread.current
Returns the currently running thread

Let’s try this with irb.

When irb first starts, it should have only one thread as the main thread.

% irb --prompt simple
>> Thread.list
=> [#<Thread:0x40.... run>]
>> Thread.list[0] == Thread.main
=> true
>> Thread.current == Thread.main
=> true

Here is the code to generate numbers from 0 to 9. However, this uses sleep
for each iteration.

>> th = Thread.new { 10.times {|x| sleep; p [Thread.current, x]} }
=> #<Thread:0x... sleep>

The thread of th is in sleep mode. The Thread.list, status, alive?, and stop? show you
the statuses of each thread.

>> Thread.list
=> [#<Thread:0x..... sleep>, #<Thread:0x.... run>]
>> th.status
=> "sleep"
>> th.alive?
=> true

• Click HERE to purchase this book now. discuss

Understanding the Thread Class • 11

http://pragprog.com/titles/sidruby
http://forums.pragprog.com/forums/sidruby

>> th.stop?
=> true

Let’s wake up th via the wakeup method.

>> th.wakeup
=> #<Thread:0x2.... run>
[#<Thread:0x2.... run>, 0]>>

th is now in running mode and prints out 0. Because both the main thread
and the th thread print out strings, the screen output may not be indented
properly. th should now be in sleep mode as it moves to the next iteration.

>> th.status
=> "sleep"

Let’s change the status of th into run mode. run changes the thread immediately,
so the output styling may differ from when using wakeup.

>> th.run
[#<Thread:0x2..... run>, 1]=> #<Thread:0x2..... run>

>> th.run
[#<Thread:0x2..... run>, 2]=> #<Thread:0x2..... run>

>> th.wakeup
=> #<Thread:0x2..... run>
[#<Thread:0x2..... run>, 3]

Next, let’s terminate by raising an exception to th.

>> th.raise('stop!')
=> nil
>> Thread.list
=> [#<Thread:0x..... run>]
>> th.status
=> nil
>> th.alive?
=> false
>> th.stop?
=> true

Since it was terminated by an exception, th.status should return nil. Thread.list
returns only a live thread, so it should return only the main thread. th is
already terminated, alive? should return false, and stop? should return true.

How about th.value? It should raise the same exception as the one raised by
th.raise(RuntimeError: stop!).

>> th.value
RuntimeError: stop!

from (irb):7

12 •

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/sidruby
http://forums.pragprog.com/forums/sidruby

from (irb):11:in `value'
from (irb):11

What if it terminated normally? This time, print out the numbers from 0 to
9 and end with 'complete' immediately without sleep. Once the main thread is
created, call th.join to wait for the end of the thread execution.

>> th = Thread.new { 10.times { |x| p x} ; 'complete' }
>> th.join
0
1
2
3
4
5
6
7
8
9
=> #<Thread:0x..... dead>
>> th.status
=> false
>> th.alive?
=> false
>> th.stop?
=> true

th.join usually waits for the thread to end. Since it already ended in this case,
it returns immediately if you run th.join again.

>> th.join
=> #<Thread:0x2ac4d35c dead>

th.value should return 'complete', which was evaluated by the thread right before
it ended.

>> th.value
=> "complete"

This gives you basic control of threading; we’ve tried all the options in irb. In
the next section, we’ll go through how to safely pass objects among threads.

• Click HERE to purchase this book now. discuss

Understanding the Thread Class • 13

http://pragprog.com/titles/sidruby
http://forums.pragprog.com/forums/sidruby

