
{{ }}Scalable and Modular
Architecture for CSS

A flexible guide to developing
sites small and large.

by Jonathan Snook

Copyright 2012 Jonathan Snook
All Rights Reserved

SMACSS: Scalable and Modular Architecture for CSS
http://smacss.com

ISBN 978-0-9856321-0-6

Snook.ca Web Development, Inc.
Ottawa, Ontario, Canada
http://snook.ca

Second edition

Categorizing CSS Rules

Every project needs some organization. Throwing every new style
you create onto the end of a single file would make finding things
more difficult and would be very confusing for anybody else work-
ing on the project. Of course, you likely have some organization in
place already. Hopefully, what you read among these pages will
highlight what works with your existing process and, if I’m lucky,
you will see new ways in which you can improve your process.

How do you decide whether to use ID selectors, or class selectors, or
any number of selectors that are at your disposal? How do you de-
cide which elements should get the styling magic you wish to be-
stow upon it? How do you make it easy to understand how your site
and your styles are organized?

At the very core of SMACSS is categorization. By categorizing CSS
rules, we begin to see patterns and can define better practices
around each of these patterns.

There are five types of categories:

1. Base
2. Layout
3. Module
4. State
5. Theme

We often find ourselves mixing styles across each of these cate-
gories. If we are more aware of what we are trying to style, we can
avoid the complexity that comes from intertwining these rules.

4 Scalable and Modular Architecture for CSS

Each category has certain guidelines that apply to it. This some-
what succinct separation allows us to ask ourselves questions dur-
ing the development process. How are we going to code things and
why are we going to code them that way?

Much of the purpose of categorizing things is to codify pat-
terns—things that repeat themselves within our design. Repetition
results in less code, easier maintenance, and greater consistency in
the user experience. These are all wins. Exceptions to the rule can
be advantageous but they should be justified.

Base rules are the defaults. They are almost exclusively single ele-
ment selectors but it could include attribute selectors, pseudo-class
selectors, child selectors or sibling selectors. Essentially, a base
style says that wherever this element is on the page, it should look
like this.

Examples of Base Styles

html, body, form { margin: 0; padding: 0; }
input[type=text] { border: 1px solid #999; }
a { color: #039; }
a:hover { color: #03C; }

Layout rules divide the page into sections. Layouts hold one or
more modules together.

Modules are the reusable, modular parts of our design. They are
the callouts, the sidebar sections, the product lists and so on.

State rules are ways to describe how our modules or layouts will
look when in a particular state. Is it hidden or expanded? Is it ac-
tive or inactive? They are about describing how a module or layout
looks on screens that are smaller or bigger. They are also about de-
scribing how a module might look in different views like the home
page or the inside page.

Scalable and Modular Architecture for CSS 5

Finally, Theme rules are similar to state rules in that they describe
how modules or layouts might look. Most sites don’t require a layer
of theming but it is good to be aware of it.

Naming Rules

By separating rules into the five categories, naming convention is
beneficial for immediately understanding which category a partic-
ular style belongs to and its role within the overall scope of the
page. On large projects, it is more likely to have styles broken up
across multiple files. In these cases, naming convention also makes
it easier to find which file a style belongs to.

I like to use a prefix to differentiate between Layout, State, and Mo-
dule rules. For Layout, I use l- but layout- would work just as

well. Using prefixes like grid- also provide enough clarity to sepa-

rate layout styles from other styles. For State rules, I like is- as in

is-hidden or is-collapsed. This helps describe things in a very

readable way.

Modules are going to be the bulk of any project. As a result, having
every module start with a prefix like .module- would be needlessly

verbose. Modules just use the name of the module itself.

6 Scalable and Modular Architecture for CSS

Example classes

/* Example Module */
.example { }

/* Callout Module */
.callout { }

/* Callout Module with State */
.callout.is-collapsed { }

/* Form field module */
.field { }

/* Inline layout */
.l-inline { }

Related elements within a module use the base name as a prefix.
On this site, code examples use .exm and the captions use .exm-

caption. I can instantly look at the caption class and understand

that it is related to the code examples and where I can find the
styles for that.

Modules that are a variation on another module should also use
the base module name as a prefix. Sub-classing is covered in more
detail in the Module Rules chapter.

This naming convention will be used throughout these pages. Like
most other things that I have outlined here, don’t feel like you have
to stick to these guidelines rigidly. Have a convention, document it,
and stick to it.

Scalable and Modular Architecture for CSS 7

	cover
	cover
	smacss-2nd
	smacss-title
	Scalable and Modular Architecture for CSS
	By Jonathan Snook

	smacss-copyright
	smacss-book
	About the Author
	Introduction
	What’s in here?

	Categorizing CSS Rules
	Naming Rules

	Base Rules
	CSS Resets

	Layout Rules
	Using ID selectors
	Layout Examples

	Module Rules
	Avoid element selectors
	New Contexts
	Subclassing Modules

	State Rules
	Isnʼt it just a module?
	Using !important
	Combining State Rules with Modules

	Theme Rules
	Themes
	Typography
	What’s in a name

	Changing State
	What is a state change?
	Change via Class Name
	Why parent and sibling states are problematic
	Handling State Change with Attribute Selectors
	Class-based State Change with CSS Animations

	Change via Pseudo-class
	Change via Media Query
	It’s all about State

	Depth of Applicability
	Minimizing the Depth

	Selector Performance
	How CSS gets evaluated
	The style of an element is evaluated on element creation
	CSS gets evaluated from right to left.

	Which rules rule?
	Constrain yourself, don’t choke yourself

	HTML5 and SMACSS
	Prototyping
	Goals of a prototype
	States
	Localization
	Dependencies

	Pieces of the puzzle
	Your Prototype

	Preprocessors
	What is a preprocessor?
	Installing a preprocessor

	Useful features of a preprocessor
	Variables
	Nesting
	Mixins
	Functions
	Extensions
	Even more

	Getting into and out of trouble
	Deep Nesting
	Nesting with SMACSS

	Unnecessary extending
	SMACSS Extensions

	Overused Mixins
	SMACSS for Repetitive Patterns
	Parameterized Mixins

	Smack that preprocessor
	State-based Media Queries with Nesting
	Organizing Your Files

	Post mortem on preprocessors

	Drop the Base
	Table

	The Icon Module
	Complicated Inheritance
	Where !important can go wrong
	An Imperfect World

	Formatting Code
	Single line versus multiple lines
	Grouping Properties
	Colour Declarations
	Be Consistent

	Resources
	SMACSS Resources
	CSS Preprocessors
	Component-based Frameworks/Methodologies
	Other Frameworks
	Documentation
	Other Resources

	smacss-excerpt-2
	About the Author
	Introduction
	What’s in here?

	Categorizing CSS Rules
	Naming Rules

	Base Rules
	CSS Resets

	Layout Rules
	Using ID selectors
	Layout Examples

	Module Rules
	Avoid element selectors
	New Contexts
	Subclassing Modules

	State Rules
	Isnʼt it just a module?
	Using !important
	Combining State Rules with Modules

	Theme Rules
	Themes
	Typography
	What’s in a name

	Changing State
	What is a state change?
	Change via Class Name
	Why parent and sibling states are problematic
	Handling State Change with Attribute Selectors
	Class-based State Change with CSS Animations

	Change via Pseudo-class
	Change via Media Query
	It’s all about State

	Depth of Applicability
	Minimizing the Depth

	Selector Performance
	How CSS gets evaluated
	The style of an element is evaluated on element creation
	CSS gets evaluated from right to left.

	Which rules rule?
	Constrain yourself, don’t choke yourself

	HTML5 and SMACSS
	Prototyping
	Goals of a prototype
	States
	Localization
	Dependencies

	Pieces of the puzzle
	Your Prototype

	Preprocessors
	What is a preprocessor?
	Installing a preprocessor

	Useful features of a preprocessor
	Variables
	Nesting
	Mixins
	Functions
	Extensions
	Even more

	Getting into and out of trouble
	Deep Nesting
	Nesting with SMACSS

	Unnecessary extending
	SMACSS Extensions

	Overused Mixins
	SMACSS for Repetitive Patterns
	Parameterized Mixins

	Smack that preprocessor
	State-based Media Queries with Nesting
	Organizing Your Files

	Post mortem on preprocessors

	Drop the Base
	Table

	The Icon Module
	Complicated Inheritance
	Where !important can go wrong
	An Imperfect World

	Formatting Code
	Single line versus multiple lines
	Grouping Properties
	Colour Declarations
	Be Consistent

	Resources
	SMACSS Resources
	CSS Preprocessors
	Component-based Frameworks/Methodologies
	Other Frameworks
	Documentation
	Other Resources

