
{{ }}Scalable and Modular
Architecture for CSS

A flexible guide to developing
sites small and large.

by Jonathan Snook

Copyright 2012 Jonathan Snook
All Rights Reserved

SMACSS: Scalable and Modular Architecture for CSS
http://smacss.com

ISBN 978-0-9856321-0-6

Snook.ca Web Development, Inc.
Ottawa, Ontario, Canada
http://snook.ca

Second edition

Module Rules

As briefly mentioned in the previous section, a Module is a more
discrete component of the page. It is your navigation bars and your
carousels and your dialogs and your widgets and so on. This is the
meat of the page. Modules sit inside Layout components. Modules
can sometimes sit within other Modules, too. Each Module should
be designed to exist as a standalone component. In doing so, the
page will be more flexible. If done right, Modules can easily be
moved to different parts of the layout without breaking.

When defining the rule set for a module, avoid using IDs and ele-
ment selectors, sticking only to class names. A module will likely
contain a number of elements and there is likely to be a desire to
use descendent or child selectors to target those elements.

Module example

.module > h2 {
padding: 5px;

}

.module span {
padding: 5px;

}

Avoid element selectors

Use child or descendant selectors with element selectors if the ele-
ment selectors will and can be predictable. Using .module span is

great if a span will predictably be used and styled the same way
every time while within that module.

Scalable and Modular Architecture for CSS 19

Styling with generic element

<div class="fld">
Folder Name

</div>

/* The Folder Module */
.fld > span {

padding-left: 20px;
background: url(icon.png);

}

The problem is that as a project grows in complexity, the more like-
ly that you will need to expand a component’s functionality and the
more limited you will be in having used such a generic element
within your rule.

Styling with generic element

<div class="fld">
Folder Name
(32 items)

</div>

Now we are in a pickle. We don’t want the icon to appear on both
elements within our folder module. Which leads me to my next
point:

Only include a selector that includes semantics. A span or div holds
none. A heading has some. A class defined on an element has plen-
ty.

Styling with generic element

<div class="fld">
Folder Name
(32 items)

</div>

20 Scalable and Modular Architecture for CSS

By adding the classes to the elements, we have increased the se-
mantics of what those elements mean and removed any ambiguity
when it comes to styling them.

If you do wish to use an element selector, it should be within one
level of a class selector. In other words, you should be in a situation
to use child selectors. Alternatively, you should be extremely confi-
dent that the element in question will not be confused with another
element. The more semantically generic the HTML element (like a
span or div), the more likely it will create a conflict down the road.
Elements with greater semantics like headings are more likely to
appear by themselves within a container and you are more likely
able to use an element selector successfully.

New Contexts

Using the module approach also allows us to better understand
where context changes are likely to occur. The need for a new posi-
tioning context, for example, is likely to happen at either the layout
level or at the root of a module.

Subclassing Modules

When we have the same module in different sections, the first in-
stinct is to use a parent element to style that module differently.

Subclassing

.pod {
width: 100%;

}
.pod input[type=text] {

width: 50%;
}
#sidebar .pod input[type=text] {

width: 100%;
}

Scalable and Modular Architecture for CSS 21

The problem with this approach is that you can run into specificity
issues that require adding even more selectors to battle against it
or to quickly fall back to using !important.

Expanding on our example pod, we have an input with two differ-
ent widths. Throughout the site, the input has a label beside it and
therefore the field should only be half the width. In the sidebar,
however, the field would be too small so we increase it to 100% and
have the label on top. All looks well and good. Now, we need to add
a new component to our page. It uses most of the same styling as a
.pod and so we re-use that class. However, this pod is special and

has a constrained width no matter where it is on the site. It is a lit-
tle different, though, and needs a width of 180px.

Battling against specificity

.pod {
width: 100%;

}
.pod input[type=text] {

width: 50%;
}
#sidebar .pod input[type=text] {

width: 100%;
}

.pod-callout {
width: 200px;

}
#sidebar .pod-callout input[type=text],
.pod-callout input[type=text] {

width: 180px;
}

We are doubling up on our selectors to be able to override the
specificity of #sidebar.

What we should do instead is recognize that the constrained layout
in the sidebar is a subclass of the pod and style it accordingly.

22 Scalable and Modular Architecture for CSS

Battling against specificity

.pod {
width: 100%;

}
.pod input[type=text] {

width: 50%;
}
.pod-constrained input[type=text] {

width: 100%;
}

.pod-callout {
width: 200px;

}
.pod-callout input[type=text] {

width: 180px;
}

With sub-classing the module, both the base module and the sub-
module class names get applied to the HTML element.

Sub-module class name in HTML

<div class="pod pod-constrained">...</div>
<div class="pod pod-callout">...</div>

Try to avoid conditional styling based on location. If you are chang-
ing the look of a module for usage elsewhere on the page or site,
sub-class the module instead.

To help battle against specificity (and if IE6 isn’t a concern), then
you can double up on your class names like in the next example.

Subclassing

.pod.pod-callout { }

<!-- In the HTML -->
<div class="pod pod-callout"> ... </div>

Scalable and Modular Architecture for CSS 23

You may be concerned about this, depending on the order of load-
ing. For example, on Yahoo! Mail, we have code coming from differ-
ent places. We had our base button styles and then we had a spe-
cial set of buttons for the compose screen. However, when you
clicked to add a contact to your address book, it loaded a compo-
nent from a different product: Address Book. (Yes, the address book
is a different product within Yahoo!.) The address book loaded its
own base button styles, thereby overwriting the sub-classed button
styles that we had.

If load order is a factor in your project, watch out for specificity is-
sues.

While more specific layout components assigned with IDs could be
used to provide specialized styling for modules, sub-classing the
module will allow the module to be moved to other sections of the
site more easily and you will avoid increasing the specificity unnec-
essarily.

24 Scalable and Modular Architecture for CSS

	cover
	cover
	smacss-2nd
	smacss-title
	Scalable and Modular Architecture for CSS
	By Jonathan Snook

	smacss-copyright
	smacss-book
	About the Author
	Introduction
	What’s in here?

	Categorizing CSS Rules
	Naming Rules

	Base Rules
	CSS Resets

	Layout Rules
	Using ID selectors
	Layout Examples

	Module Rules
	Avoid element selectors
	New Contexts
	Subclassing Modules

	State Rules
	Isnʼt it just a module?
	Using !important
	Combining State Rules with Modules

	Theme Rules
	Themes
	Typography
	What’s in a name

	Changing State
	What is a state change?
	Change via Class Name
	Why parent and sibling states are problematic
	Handling State Change with Attribute Selectors
	Class-based State Change with CSS Animations

	Change via Pseudo-class
	Change via Media Query
	It’s all about State

	Depth of Applicability
	Minimizing the Depth

	Selector Performance
	How CSS gets evaluated
	The style of an element is evaluated on element creation
	CSS gets evaluated from right to left.

	Which rules rule?
	Constrain yourself, don’t choke yourself

	HTML5 and SMACSS
	Prototyping
	Goals of a prototype
	States
	Localization
	Dependencies

	Pieces of the puzzle
	Your Prototype

	Preprocessors
	What is a preprocessor?
	Installing a preprocessor

	Useful features of a preprocessor
	Variables
	Nesting
	Mixins
	Functions
	Extensions
	Even more

	Getting into and out of trouble
	Deep Nesting
	Nesting with SMACSS

	Unnecessary extending
	SMACSS Extensions

	Overused Mixins
	SMACSS for Repetitive Patterns
	Parameterized Mixins

	Smack that preprocessor
	State-based Media Queries with Nesting
	Organizing Your Files

	Post mortem on preprocessors

	Drop the Base
	Table

	The Icon Module
	Complicated Inheritance
	Where !important can go wrong
	An Imperfect World

	Formatting Code
	Single line versus multiple lines
	Grouping Properties
	Colour Declarations
	Be Consistent

	Resources
	SMACSS Resources
	CSS Preprocessors
	Component-based Frameworks/Methodologies
	Other Frameworks
	Documentation
	Other Resources

	smacss-excerpt-3
	About the Author
	Introduction
	What’s in here?

	Categorizing CSS Rules
	Naming Rules

	Base Rules
	CSS Resets

	Layout Rules
	Using ID selectors
	Layout Examples

	Module Rules
	Avoid element selectors
	New Contexts
	Subclassing Modules

	State Rules
	Isnʼt it just a module?
	Using !important
	Combining State Rules with Modules

	Theme Rules
	Themes
	Typography
	What’s in a name

	Changing State
	What is a state change?
	Change via Class Name
	Why parent and sibling states are problematic
	Handling State Change with Attribute Selectors
	Class-based State Change with CSS Animations

	Change via Pseudo-class
	Change via Media Query
	It’s all about State

	Depth of Applicability
	Minimizing the Depth

	Selector Performance
	How CSS gets evaluated
	The style of an element is evaluated on element creation
	CSS gets evaluated from right to left.

	Which rules rule?
	Constrain yourself, don’t choke yourself

	HTML5 and SMACSS
	Prototyping
	Goals of a prototype
	States
	Localization
	Dependencies

	Pieces of the puzzle
	Your Prototype

	Preprocessors
	What is a preprocessor?
	Installing a preprocessor

	Useful features of a preprocessor
	Variables
	Nesting
	Mixins
	Functions
	Extensions
	Even more

	Getting into and out of trouble
	Deep Nesting
	Nesting with SMACSS

	Unnecessary extending
	SMACSS Extensions

	Overused Mixins
	SMACSS for Repetitive Patterns
	Parameterized Mixins

	Smack that preprocessor
	State-based Media Queries with Nesting
	Organizing Your Files

	Post mortem on preprocessors

	Drop the Base
	Table

	The Icon Module
	Complicated Inheritance
	Where !important can go wrong
	An Imperfect World

	Formatting Code
	Single line versus multiple lines
	Grouping Properties
	Colour Declarations
	Be Consistent

	Resources
	SMACSS Resources
	CSS Preprocessors
	Component-based Frameworks/Methodologies
	Other Frameworks
	Documentation
	Other Resources

