
Extracted from:

Reactive Programming with RxJS
Untangle Your Asynchronous JavaScript Code

This PDF file contains pages extracted from Reactive Programming with RxJS,
published by the Pragmatic Bookshelf. For more information or to purchase a

paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2015 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Reactive Programming with RxJS
Untangle Your Asynchronous JavaScript Code

Sergi Mansilla

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Rebecca Gulick (editor)
Potomac Indexing, LLC (index)
Candace Cunningham (copyedit)
Dave Thomas (layout)
Janet Furlow (producer)
Ellie Callahan (support)

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2015 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-129-2
Encoded using the finest acid-free high-entropy binary digits.
Book version: P2.0—August 2016

https://pragprog.com
support@pragprog.com
rights@pragprog.com

CHAPTER 1

The Reactive Way
The real world is pretty messy: events happen in random order, applications
crash, and networks fail. Few applications are completely synchronous, and
writing asynchronous code is necessary to keep applications responsive. Most
of the time it’s downright painful, but it really doesn’t have to be.

Modern applications need super-fast responses and the ability to process
data from different sources at the same time without missing a beat. Current
techniques won’t get us there because they don’t scale—code becomes expo-
nentially more complex as we add concurrency and application state. They
get the job done only at the expense of a considerable mental load on the
developer, and that leads to bugs and complexity in our code.

This chapter introduces you to reactive programming, a natural, easier way
to think about asynchronous code. I’ll show you how streams of events—
which we call Observables—are a beautiful way to handle asynchronous code.
Then we’ll create an Observable and see how reactive thinking and RxJS
dramatically improve on existing techniques and make you a happier, more
productive programmer.

What’s Reactive?
Let’s start by looking at a little reactive RxJS program. This program needs
to retrieve data from different sources with the click of a button, and it has
the following requirements:

• It must unify data from two different locations that use different JSON
structures.

• The final result should not contain any duplicates.

• To avoid requesting data too many times, the user should not be able to
click the button more than once per second.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/smreactjs
http://forums.pragprog.com/forums/smreactjs

Using RxJS, we would write something like this:

var button = document.getElementById('retrieveDataBtn');
var source1 = Rx.DOM.getJSON('/resource1').pluck('name');
var source2 = Rx.DOM.getJSON('/resource2').pluck('props', 'name');

function getResults(amount) {
return source1.merge(source2)
.pluck('names')
.flatMap(function(array) { return Rx.Observable.from(array); })
.distinct()
.take(amount);

}

var clicks = Rx.Observable.fromEvent(button, 'click');
clicks.debounce(1000)

.flatMap(getResults(5))

.subscribe(
function(value) { console.log('Received value', value); },
function(err) { console.error(err); },
function() { console.log('All values retrieved!'); }

);

Don’t worry about understanding what’s going on here; let’s focus on the
10,000-foot view for now. The first thing you see is that we express more with
fewer lines of code. We accomplish this by using Observables.

An Observable represents a stream of data. Programs can be expressed
largely as streams of data. In the preceding example, both remote sources
are Observables, and so are the mouse clicks from the user. In fact, our pro-
gram is essentially a single Observable made from a button’s click event that
we transform to get the results we want.

Reactive programming is expressive. Take, for instance, throttling mouse
clicks in our example. Imagine how complex it would be to do that using
callbacks or promises: we’d need to reset a timer every second and keep state
of whether a second has passed since the last time the user clicked the button.
It’s a lot of complexity for so little functionality, and the code for it is not even
related to your program’s actual functionality. In bigger applications, these
little complexities add up very quickly to make for a tangled code base.

With the reactive approach, we use the method debounce to throttle the stream
of clicks. This ensures that there is at least a second between each click, and
discards any clicks in between. We don’t care how this happens internally;
we just express what we want our code to do, not how to do it.

It gets much more interesting. Next you’ll see how reactive programming can
help us make our programs more efficient and expressive.

• 2

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/smreactjs
http://forums.pragprog.com/forums/smreactjs

Spreadsheets Are Reactive
Let’s start by considering the quintessential example of a reactive system:
the spreadsheet. We all have used them, but we rarely stop and think how
shockingly intuitive they are. Let’s say we have a value in cell A1 of the
spreadsheet. We can then reference it in other cells in the spreadsheet, and
whenever we change A1, every cell depending on A1 will automatically update
its own value.

That behavior feels natural to us. We didn’t have to tell the computer to update
cells that depend on A1 or how to do it; these cells just reacted to the change.
In a spreadsheet, we simply declare our problem, and we don’t worry about
how the computer calculates the results.

This is what reactive programming aims for. We declare relationships between
players, and the program evolves as these entities change or come up with
new values.

The Mouse as a Stream of Values
To understand how to see events as streams of values, let’s think of the pro-
gram from the beginning of this chapter. There we used mouse clicks as an
infinite sequence of events generated in real time as the user clicks. This is
an idea by Erik Meijer—the inventor of RxJS—proposed in his paper “Your
Mouse Is a Database.”1

In reactive programming, we see mouse clicks as a continuous stream of
events that we can query and manipulate. Thinking of streams instead of
isolated values opens up a whole new way to program, one in which we can
manipulate entire sequences of values that haven’t been created yet.

Let that thought sink in for a moment. This is different from what we’re used
to, which is having values stored somewhere such as a database or an array
and waiting for them to be available before we use them. If they are not
available yet (for instance, a network request), we wait for them and use them
only when they become available.

1. http://queue.acm.org/detail.cfm?id=2169076

• Click HERE to purchase this book now. discuss

What’s Reactive? • 3

http://queue.acm.org/detail.cfm?id=2169076
http://pragprog.com/titles/smreactjs
http://forums.pragprog.com/forums/smreactjs

Click! Click!Click!

time
We can think of our streaming sequence as an array in which elements are
separated by time instead of by memory. With either time or memory, we have
sequences of elements:

Click! Click!Click![], ,
time

Seeing your program as flowing sequences of data is key to understanding
RxJS programming. It takes a bit of practice, but it is not hard. In fact, most
data we use in any application can be expressed as a sequence. We’ll look at
sequences more in depth in Chapter 2, Deep in the Sequence, on page ?.

Querying the Sequence
Let’s implement a simple version of that mouse stream using traditional event
listeners in JavaScript. To log the x- and y-coordinates of mouse clicks, we
could write something like this:

ch1/thinking_sequences.js

document.body.addEventListener('click', function(e) {
console.log(e.clientX, e.clientY);

});

This code will print the x- and y-coordinates of every mouse click in order.
The output looks like this:

252 183❮

211 232
153 323
...

Looks like a sequence, doesn’t it? The problem, of course, is that manipulating
events is not as easy as manipulating arrays. For example, if we want to
change the preceding code so it logs only the first 10 clicks on the right side
of the screen (quite a random goal, but bear with me here), we would write
something like this:

• 4

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/smreactjs/code/ch1/thinking_sequences.js
http://pragprog.com/titles/smreactjs
http://forums.pragprog.com/forums/smreactjs

var clicks = 0;
document.addEventListener('click', function registerClicks(e) {

if (clicks < 10) {
if (e.clientX > window.innerWidth / 2) {
console.log(e.clientX, e.clientY);
clicks += 1;

}
} else {

document.removeEventListener('click', registerClicks);
}

});

To meet our requirements, we introduced external state through a global
variable clicks that counts clicks made so far. We also need to check for two
different conditions and use nested conditional blocks. And when we’re done,
we have to tidy up and unregister the event to not leak memory.

Side Effects and External State

If an action has impact outside of the scope where it happens, we call this a side
effect. Changing a variable external to our function, printing to the console, or
updating a value in a database are examples of side effects.

For example, changing the value of a variable that exists inside our function is safe.
But if that variable is outside the scope of our function then other functions can
change its value. That means our function is not in control anymore and it can’t
assume that external variable contains the value we expect. We’d need to track it and
add checks to ensure its value is what we expect. At that point we’d be adding code
that is not relevant to our program, making it more complex and error prone.

Although side effects are necessary to build any interesting program, we should strive
for having as few as possible in our code. That’s especially important in reactive
programs, where we have many moving pieces that change over time. Throughout
this book, we’ll pursue an approach that avoids external state and side effects. In
fact, in Chapter 3, Building Concurrent Programs, on page ?, we’ll build an entire
video game with no side effects.

We managed to meet our easy requirements, but ended up with pretty com-
plicated code for such a simple goal. It’s difficult code to maintain and not
obvious for a developer who looks at it for the first time. More importantly,
we made it prone to develop subtle bugs in the future because we need to
keep state.

All we want in that situation is to query the “database” of clicks. If we were
dealing with a relational database, we’d use the declarative language SQL:

SELECT x, y FROM clicks LIMIT 10

• Click HERE to purchase this book now. discuss

What’s Reactive? • 5

http://pragprog.com/titles/smreactjs
http://forums.pragprog.com/forums/smreactjs

What if we treated that stream of click events as a data source that can be
queried and transformed? After all, it’s no different from a database, one that
emits values in real time. All we need is a data type that abstracts the concept
for us.

Enter RxJS and its Observable data type:

Rx.Observable.fromEvent(document, 'click')
.filter(function(c) { return c.clientX > window.innerWidth / 2; })
.take(10)
.subscribe(function(c) { console.log(c.clientX, c.clientY) })

This code does the same as the code on page 5, and it reads like this:

Create an Observable of click events and filter out the clicks that happen on the
left side of the screen. Then print the coordinates of only the first 10 clicks to the
console as they happen.

Notice how the code is easy to read even if you’re not familiar with it. Also,
there’s no need to create external variables to keep state, which makes the
code self-contained and makes it harder to introduce bugs. There’s no need
to clean up after yourself either, so no chance of introducing memory leaks
by forgetting about unregistering event handlers.

In the preceding code we created an Observable from a DOM event. An
Observable provides us with a sequence or stream of events that we can
manipulate as a whole instead of a single isolated event each time. Dealing
with sequences gives us enormous power; we can merge, transform, or pass
around Observables easily. We’ve turned events we can’t get a handle on into
a tangible data structure that’s as easy to use as an array, but much more
flexible.

In the next section we’ll see the principles that make Observables such a
great tool.

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/smreactjs
http://forums.pragprog.com/forums/smreactjs

