
Extracted from:

Reactive Programming with RxJS
Untangle Your Asynchronous JavaScript Code

This PDF file contains pages extracted from Reactive Programming with RxJS,
published by the Pragmatic Bookshelf. For more information or to purchase a

paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2015 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Reactive Programming with RxJS
Untangle Your Asynchronous JavaScript Code

Sergi Mansilla

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Rebecca Gulick (editor)
Potomac Indexing, LLC (index)
Candace Cunningham (copyedit)
Dave Thomas (layout)
Janet Furlow (producer)
Ellie Callahan (support)

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2015 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-129-2
Encoded using the finest acid-free high-entropy binary digits.
Book version: P2.0—August 2016

https://pragprog.com
support@pragprog.com
rights@pragprog.com

RxJS’s Subject Class
A Subject is a type that implements both Observer and Observable types. As
an Observer, it can subscribe to Observables, and as an Observable it can
produce values and have Observers subscribe to it.

In some scenarios a single Subject can do the work of a combination of
Observers and Observables. For example, for making a proxy object between
a data source and the Subject’s listeners, we could use this:

spaceship_reactive/subjects.js

var subject = new Rx.Subject();
var source = Rx.Observable.interval(300)

.map(function(v) { return 'Interval message #' + v; })

.take(5);

source.subscribe(subject);

var subscription = subject.subscribe(
function onNext(x) { console.log('onNext: ' + x); },
function onError(e) { console.log('onError: ' + e.message); },
function onCompleted() { console.log('onCompleted'); }

);

subject.onNext('Our message #1');
subject.onNext('Our message #2');

setTimeout(function() {
subject.onCompleted();

}, 1000);

Output:

onNext: Our message #1❮

onNext: Our message #2
onNext: Interval message #0
onNext: Interval message #1
onNext: Interval message #2
onCompleted

In the preceding example we create a new Subject and a source Observable
that emits an integer every 300 milliseconds. Then we subscribe the Subject
to the Observable. After that, we subscribe an Observer to the Subject itself.
The Subject now behaves as an Observable.

Next we make the Subject emit values of its own (message1 and message2). In
the final result, we get the Subject’s own messages and then the proxied values
from the source Observable. The values from the Observable come later
because they are asynchronous, whereas we made the Subject’s own values
immediate. Notice that even if we tell the source Observable to take the first

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/smreactjs/code/spaceship_reactive/subjects.js
http://pragprog.com/titles/smreactjs
http://forums.pragprog.com/forums/smreactjs

five values, the output shows only the first three. That’s because after one
second we call onCompleted on the Subject. This finishes the notifications to all
subscriptions and overrides the take operator in this case.

The Subject class provides the base for creating more specialized Subjects. In
fact, RxJS comes with some interesting ones: AsyncSubject, ReplaySubject, and
BehaviorSubject.

AsyncSubject
AsyncSubject emits the last value of a sequence only if the sequence completes.
This value is then cached forever, and any Observer that subscribes after the
value has been emitted will receive it right away. AsyncSubject is convenient for
asynchronous operations that return a single value, such as Ajax requests.

Let’s see a simple example of an AsyncSubject subscribing to a range:

spaceship_reactive/subjects.js

var delayedRange = Rx.Observable.range(0, 5).delay(1000);
var subject = new Rx.AsyncSubject();

delayedRange.subscribe(subject);

subject.subscribe(
function onNext(item) { console.log('Value:', item); },
function onError(err) { console.log('Error:', err); },
function onCompleted() { console.log('Completed.'); }

);

In that example, delayedRange emits the values 0 to 4 after a delay of a second.
Then we create a new AsyncSubject subject and subscribe it to delayedRange. The
output is the following:

Value: 4❮

Completed.

As expected, we get only the last value that the Observer emits. Let’s now use
AsyncSubject for a more realistic scenario. We’ll retrieve some remote content:

spaceship_reactive/subjects.js

function getProducts(url) {
var subject;

return Rx.Observable.create(function(observer) {❶
if (!subject) {
subject = new Rx.AsyncSubject();
Rx.DOM.get(url).subscribe(subject);❷

}
return subject.subscribe(observer);❸

});

• 8

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/smreactjs/code/spaceship_reactive/subjects.js
http://media.pragprog.com/titles/smreactjs/code/spaceship_reactive/subjects.js
http://pragprog.com/titles/smreactjs
http://forums.pragprog.com/forums/smreactjs

}

var products = getProducts('/products');❹
// Will trigger request and receive the response when read
products.subscribe(❺

function onNext(result) { console.log('Result 1:', result.response); },
function onError(error) { console.log('ERROR', error); }

);

// Will receive the result immediately because it's cached
setTimeout(function() {❻

products.subscribe(
function onNext(result) { console.log('Result 2:', result.response); },
function onError(error) { console.log('ERROR', error); }

);
}, 5000);

In this code, when getProducts is called with a URL, it returns an Observer that
emits the result of the HTTP GET request. Here’s how it breaks down:

❶ getProducts returns an Observable sequence. We create it here.

❷ If we haven’t created an AsyncSubject yet, we create it and subscribe it to
the Observable that Rx.DOM.Request.get(url) returns.

❸ We subscribe the Observer to the AsyncSubject. Every time an Observer
subscribes to the Observable, it will actually be subscribed to the AsyncSub-
ject, which is acting as a proxy between the Observable retrieving the URL
and the Observers.

❹ We create the Observable that retrieves the URL "products" and store it
in the products variable.

❺ This is the first subscription and will kick off the URL retrieval and log
the results when the URL is retrieved.

❻ This is the second subscription, which runs five seconds after the first
one. Since at that time the URL has already been retrieved, there’s no
need for another network request. It will receive the result of the request
immediately because it is already stored in the AsyncSubject subject.

The interesting bit is that we’re using an AsyncSubject that subscribes to the
Rx.DOM.Request.get Observable. Because AsyncSubject caches the last result, any
subsequent subscription to products will receive the result right away, without
causing another network request. We can use AsyncSubject whenever we expect
a single result and want to hold onto it.

• Click HERE to purchase this book now. discuss

RxJS’s Subject Class • 9

http://pragprog.com/titles/smreactjs
http://forums.pragprog.com/forums/smreactjs

Joe asks:

Does That Mean AsyncSubject Acts Like a
Promise?

Indeed.

AsyncSubject represents the result of an asynchronous action, and you can use it as a
substitute for a promise. The difference internally is that a promise will only ever
process a single value, whereas AsyncSubject processes all values in a sequence, only
ever emitting (and caching) the last one.

Being able to so easily simulate promises shows the flexibility of the RxJS model.
(Even without AsyncSubject, it would be pretty easy to simulate a promise using
Observables.)

BehaviorSubject
When an Observer subscribes to a BehaviorSubject, it receives the last emitted
value and then all the subsequent values. BehaviorSubject requires that we pro-
vide a starting value, so that all Observers will always receive a value when
they subscribe to a BehaviorSubject.

Imagine we want to retrieve a remote file and print its contents on an HTML
page, but we want placeholder text while we wait for the contents. We can
use a BehaviorSubject for this:

spaceship_reactive/behavior_subject.js

var subject = new Rx.BehaviorSubject('Waiting for content');

subject.subscribe(
function(result) {

document.body.textContent = result.response || result;
},
function(err) {

document.body.textContent = 'There was an error retrieving content';
}

);

Rx.DOM.get('/remote/content').subscribe(subject);

• 10

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/smreactjs/code/spaceship_reactive/behavior_subject.js
http://pragprog.com/titles/smreactjs
http://forums.pragprog.com/forums/smreactjs

In the code, we initialize a new BehaviorSubject with our placeholder content.
Then we subscribe to it and change the HTML body content in both onNext
and onError, depending on the result.

Now the HTML body contains our placeholder text, and it will stay that way
until the Subject emits a new value. Finally, we request the resource we want
and we subscribe our Subject to the resulting Observer.

BehaviorSubject guarantees that there will always be at least one value emitted,
because we provide a default value in its constructor. Once the BehaviorSubject
completes it won’t emit any more values, freeing the memory used by the
cached value.

ReplaySubject
A ReplaySubject caches its values and re-emits them to any Observer that sub-
scribes late to it. Unlike with AsyncSubject, the sequence doesn’t need to be
completed for this to happen.

ReplaySubjectSubject

var subject = new Rx.ReplaySubject();var subject = new Rx.Subject();

subject.onNext(1);subject.onNext(1);

subject.subscribe(function(n) {subject.subscribe(function(n) {
console.log('Received value:', n);console.log('Received value:', n);

});});

subject.onNext(2);subject.onNext(2);
subject.onNext(3);subject.onNext(3);
Received value: 1❮Received value: 2❮

Received value: 2Received value: 3
Received value: 3

ReplaySubject is useful to make sure that Observers get all the values emitted
by an Observable from the start. It spares us from writing messy code that
caches previous values, saving us from nasty concurrency-related bugs.

Of course, to accomplish that behavior ReplaySubject caches all values in
memory. To prevent it from using too much memory, we can limit the amount
of data it stores by buffer size or window of time, or by passing particular
parameters to the constructor.

The first parameter to the constructor of ReplaySubject takes a number that
represents how many values we want to buffer:

• Click HERE to purchase this book now. discuss

RxJS’s Subject Class • 11

http://pragprog.com/titles/smreactjs
http://forums.pragprog.com/forums/smreactjs

var subject = new Rx.ReplaySubject(2); // Buffer size of 2

subject.onNext(1);
subject.onNext(2);
subject.onNext(3);

subject.subscribe(function(n) {
console.log('Received value:', n);

});

Received value: 2❮

Received value: 3

The second parameter takes a number that represents the time in milliseconds
during which we want to buffer values:

var subject = new Rx.ReplaySubject(null, 200); // Buffer size of 200ms

setTimeout(function() { subject.onNext(1); }, 100);
setTimeout(function() { subject.onNext(2); }, 200);
setTimeout(function() { subject.onNext(3); }, 300);
setTimeout(function() {

subject.subscribe(function(n) {
console.log('Received value:', n);

});

subject.onNext(4);
}, 350);

In this example we set a buffer based on time, instead of the number of values.
Our ReplaySubject will cache values that were emitted up to 200 milliseconds
ago. We emit three values, each separated by 100 milliseconds, and after 350
milliseconds we subscribe an Observer and we emit yet another value. At the
moment of the subscription the items cached are 2 and 3, because 1 happened
too long ago (around 250 milliseconds ago), so it is no longer cached.

Subjects are a powerful tool that can save you a lot of time. They provide
great solutions to common scenarios like caching and repeating. And since
at their core they are just Observables and Observers, you don’t need to learn
anything new.

• 12

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/smreactjs
http://forums.pragprog.com/forums/smreactjs

