
Extracted from:

Reactive Programming with RxJS 5
Untangle Your Asynchronous JavaScript Code

This PDF file contains pages extracted from Reactive Programming with RxJS 5,
published by the Pragmatic Bookshelf. For more information or to purchase a

paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2018 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Reactive Programming with RxJS 5
Untangle Your Asynchronous JavaScript Code

Sergi Mansilla

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Managing Editor: Brian MacDonald
Supervising Editor: Jacquelyn Carter
Indexing: Potomac Indexing, LLC
Copy Editor: Jasmine Kwityn
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2018 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-247-3
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—February 2018

https://pragprog.com
support@pragprog.com
rights@pragprog.com

CHAPTER 5

Bending Time with Schedulers
As soon as I discovered RxJS, I started using it in my projects. For a while I
thought I knew how to use it effectively, but there was a nagging question:
how do I know whether the operator I’m using is synchronous or asyn-
chronous? In other words, when exactly do operators emit notifications? This
seemed a crucial part of using RxJS correctly, but it felt a bit blurry to me.

The interval operator, I thought, is clearly asynchronous, so it must use
something like setTimeout internally to emit items. But what if I’m using range?
Does it emit asynchronously as well? Does it block the event loop? What about
from? I was using these operators everywhere, but I didn’t know much about
their internal concurrency model.

Then I learned about Schedulers.

Schedulers are a powerful mechanism to precisely manage concurrency in
your applications. They give you fine-grained control over how an Observable
emits notifications by allowing you to change their concurrency model as you
go. In this chapter you’ll learn how to use Schedulers and apply them in
common scenarios. We’ll focus on testing, where Schedulers are especially
useful, and you’ll learn how to make your own Schedulers.

Using Schedulers
A Scheduler is a mechanism to “schedule” an action to happen in the future.
Each operator in RxJS uses one Scheduler internally, selected to provide the
best performance in the most likely scenario.

Let’s see how we can change the Scheduler in operators and the consequences
of doing so. First let’s create an array with 1,000 integers in it:

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/smreactjs5
http://forums.pragprog.com/forums/smreactjs5

const itemArray = [];
for (let i = 0; i < 1000; i++) {

itemArray.push(i);
}

Then, we create an Observable from arr and force it to emit all the notifications
by subscribing to it. In the code we also measure the amount of time it takes
to emit all the notifications:

const timeStart = Date.now();
Observable.from(itemArray).subscribe(null, null, () => {

console.log(`Total time: ${Date.now() - timeStart}ms`);
});

"Total time: 1ms”❮

One millisecond—not bad! Unlike RxJS 4, RxJS 5 doesn’t use any Scheduler
by default, so this code processes all the notifications synchronously.

Now let’s change the Scheduler to Rx.Scheduler.asap:

const timeStart = Date.now();
Observable.from(itemArray, Scheduler.asap).subscribe(null, null, () => {

console.log(`Total time: ${Date.now() - timeStart}ms`);
});

"Total time: 169ms”❮

Wow, our code runs more than a hundred times slower than with no Sched-
uler. That’s because the asap Scheduler runs each notification asynchronously.
We can verify this by adding a simple log statement after the subscription.

Using no Scheduler:

Rx.Observable.from(arr).subscribe(...);
console.log('Hi there!');

"Total time: 1ms"❮

"Hi there!"

Using the asap Scheduler:

Rx.Observable.from(arr, Rx.Scheduler.asap).subscribe(...);
console.log('Hi there!');

"Hi there!"❮

"Total time: 169ms"

When using no Scheduler, the console.log statement happens only when the
Observable has emitted all of its notifications, because they happen syn-
chronously. But when Rx.Scheduler.asap is used, console.log runs first, whereas

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/smreactjs5
http://forums.pragprog.com/forums/smreactjs5

our Observer’s notifications run asynchronously, so they appear after the
console.log statement.

So, Schedulers have a big impact on how our Observables work. In our case
here, performance suffered from asynchronously processing a big, already-
available array. But we can use Schedulers to improve performance. For
example, we can switch the Scheduler on the fly before doing expensive
operations on an Observable:

Observable.from(itemArray)
.groupBy(value => value % 2 === 0)
.map(value => value.observeOn(Scheduler.asap))
.map(groupedObservable => expensiveOperation(groupedObservable));➤

In the preceding code we group all the values in the array into two groups:
even and uneven values. groupBy returns an Observable that emits an
Observable for each group created. And here’s the cool part: just before run-
ning an expensive operation on the items in each grouped Observable, we
use observeOn to switch the Scheduler to the asap one, so that the expensive
operation will be executed asynchronously, not blocking the event loop.

observeOn and subscribeOn
In the previous section, we used the observeOn operator to change the Scheduler
in some Observables. observeOn and subscribeOn are instance operators that
return a copy of the Observable instance, but that use the Scheduler we pass
as a parameter.

observeOn takes a Scheduler and returns a new Observable that uses that
Scheduler. It will make every next call run in the new Scheduler.

subscribeOn forces the subscription and un-subscription work (not the notifica-
tions) of an Observable to run on a particular Scheduler. Like observeOn, it
accepts a Scheduler as a parameter. subscribeOn is useful when, for example,
we’re running in the browser and doing significant work in the subscribe call
but we don’t want to block the UI thread with it.

Basic Rx Schedulers
Let’s look a bit more in depth at the Schedulers that we just used. The ones
RxJS’s operators use the most are asap and queue. There are other, more spe-
cialized Schedulers like the animationFrame scheduler, which we wll see later in
the chapter.

• Click HERE to purchase this book now. discuss

Using Schedulers • 7

http://pragprog.com/titles/smreactjs5
http://forums.pragprog.com/forums/smreactjs5

The asap Scheduler

The asap Scheduler runs actions asynchronously. You can think of it as a
rough equivalent of setTimeout with zero milliseconds delay that keeps the order
in the sequence. It uses the most efficient asynchronous implementation
available on the platform it runs (for example, process.nextTick in Node.js or set-
Timeout in the browser).

Let’s take the previous example with range and make it run on the asap
Scheduler. For this, we’ll use the observeOn operator:

console.log("Before subscription");
Observable.range(1, 5)

.do(value => {
console.log("Processing value", value);

})
.observeOn(Scheduler.asap)
.map(value => value * value)
.subscribe(value => {

console.log("Emitted", value);
});

console.log("After subscription");

Before subscription❮

Processing value 1
Processing value 2
Processing value 3
Processing value 4
Processing value 5
After subscription
Emitted 1
Emitted 4
Emitted 9
Emitted 16
Emitted 25

There are significant differences in the output this time. Our console.log state-
ment runs immediately for every value, but we make the Observable run on
the asap Scheduler, which yields each value asynchronously. That means our
log statements in the do operator are processed before the squared values.

When to Use It

The asap Scheduler never blocks the event loop, so it’s ideal for operations
that involve time, like asynchronous requests. It can also be used in Observ-
ables that never complete, because it doesn’t block the program while waiting
for new notifications that may never happen.

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/smreactjs5
http://forums.pragprog.com/forums/smreactjs5

The queue Scheduler

The queue Scheduler is synchronous like the immediate Scheduler. The differ-
ence is that if we use recursive operators, it enqueues the actions to execute
instead of executing them right away. A recursive operator is an operator that
itself schedules another operator. A good example is repeat. The repeat operator
—if given no parameters—keeps repeating the previous Observable sequence
in the chain indefinitely.

When to Use It

As a rule of thumb, the queue Scheduler should be used for large sequences
and operations that involve recursive operators like repeat, and in general for
iterations that contain nested operators.

• Click HERE to purchase this book now. discuss

Using Schedulers • 9

http://pragprog.com/titles/smreactjs5
http://forums.pragprog.com/forums/smreactjs5

