
Extracted from:

The Cucumber for Java Book
Behaviour-Driven Development

for Testers and Developers

This PDF file contains pages extracted from The Cucumber for Java Book, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2015 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

The Cucumber for Java Book
Behaviour-Driven Development

for Testers and Developers

Seb Rose
Matt Wynne

Aslak Hellesøy

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at https://pragprog.com.

The team that produced this book includes:

Jacquelyn Carter (editor)
Potomac Indexing, LLC (indexer)
Liz Welch (copyeditor)
Dave Thomas (typesetter)
Janet Furlow (producer)
Ellie Callahan (support)

For international rights, please contact rights@pragprog.com.

Copyright © 2015 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-941222-29-4
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—February 2015

https://pragprog.com
rights@pragprog.com

Sketching Out the Domain Model
The heart of any object-oriented program is the domain model. When we start
to build a new system, we like to work directly with the domain model. This
allows us to iterate and learn quickly about the problem we’re working on
without getting distracted by user interface gizmos. Once we have a domain
model that really reflects our understanding of the system, it’s easy to wrap
it in a pretty skin.

We’re going to let Cucumber drive our work, building the domain model
classes directly in the step definitions. As usual, we start by running mvn clean
test on our scenario to remind us what to do next:

T E S T S

Running RunCukesTest
Feature: Cash Withdrawal

Scenario: Successful withdrawal from an account in credit
Given I have deposited $100 in my account
When I request $20
cucumber.api.PendingException: TODO: implement me

at nicebank.Steps.iRequest$(Steps.java:22)
at *.When I request $20(cash_withdrawal.feature:4)

Then $20 should be dispensed

1 Scenarios (1 pending)
3 Steps (1 skipped, 1 pending, 1 passed)
0m0.090s

cucumber.api.PendingException: TODO: implement me
at nicebank.Steps.iRequest$(Steps.java:22)
at *.When I request $20(cash_withdrawal.feature:4)

When we last worked on this scenario, we’d just reached the point where we
had written the regular expressions for each of our step definitions and
implemented the first one. Here’s how our steps file looks:

step_definitions_inside/01/src/test/java/nicebank/Steps.java
package nicebank;

import cucumber.api.java.en.*;
import cucumber.api.PendingException;

public class Steps {

class Account {
public Account(int openingBalance) {

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/srjcuc/code/step_definitions_inside/01/src/test/java/nicebank/Steps.java
http://pragprog.com/titles/srjcuc
http://forums.pragprog.com/forums/srjcuc

}
}

@Given("^I have deposited \\$(\\d+) in my account$")
public void iHaveDeposited$InMyAccount(int amount) throws Throwable {

new Account(amount);
}

@When("^I request \\$(\\d+)$")
public void iRequest$(int arg1) throws Throwable {

// Write code here that turns the phrase above into concrete actions
throw new PendingException();

}

@Then("^\\$(\\d+) should be dispensed$")
public void $ShouldBeDispensed(int arg1) throws Throwable {

// Write code here that turns the phrase above into concrete actions
throw new PendingException();

}
}

In that first step definition, we create an instance of our new Account class.
Cucumber then tells us that we need to work on our second step definition,
which is still marked as Pending. Before we do that, let’s review the code in
our step definition and see what we think. There are a few things we’re not
happy about:

• Some inconsistent language is creeping in; the step talks about depositing
funds, but the code passes funds to the Account constructor.

• The step is lying to us! It says Given I have deposited $100 in my account, and it’s
passed. Yet we know from our implementation that nothing has been
deposited anywhere.

• Bank balances don’t always contain whole numbers of dollars, but our
step definition uses an int. We should be able to deposit dollars and cents.

We’ll work through each of these points before we move on to the next step
in the scenario.

Getting the Words Right
We want to clarify the wording before we do anything else, so let’s think about
how we could make the code in the step definition read more like the text in
the step. We could go back and reword the step to say something like Given an
Account with a balance of $100. In reality, though, the only way that an account
would have a balance is if someone deposited funds into it. So, let’s change
the way we talk to the domain model inside our step definition to reflect that:

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/srjcuc
http://forums.pragprog.com/forums/srjcuc

step_definitions_inside/02/src/test/java/nicebank/Steps.java
class Account {

public void deposit(int amount) {

}
}

step_definitions_inside/02/src/test/java/nicebank/Steps.java
@Given("^I have deposited \\$(\\d+) in my account$")
public void iHaveDeposited$InMyAccount(int amount) throws Throwable {

Account myAccount = new Account();
myAccount.deposit(amount);

}

That seems better.

There’s something else in the wording that bothers us. In the step, we talk
about my account, which implies the existence of a protagonist in the scenario
who has a relationship to the account, perhaps a Customer. This is a sign that
we’re probably missing a domain concept. However, until we get to a scenario
where we have to deal with more than one customer, we’d prefer to keep
things simple and focus on designing the fewest classes we need to get this
scenario running. So, we’ll park this concern for now.

Telling the Truth
Now that we’re happier with the interface to our Account class, we can resolve
the next issue from our code review. After we’ve deposited the funds in the
account, we can check its balance with an assertion:

step_definitions_inside/03/src/test/java/nicebank/Steps.java
@Given("^I have deposited \\$(\\d+) in my account$")
public void iHaveDeposited$InMyAccount(int amount) throws Throwable {

Account myAccount = new Account();
myAccount.deposit(amount);

Assert.assertEquals("Incorrect account balance -",
amount, myAccount.getBalance());

}

We’ve used a JUnit assertion here, but if you prefer another assertion library,
feel free to use that. It might seem odd to put an assertion in a Given step, but
it communicates to future readers of this code what state we expect the system
to be in once the step has run. We’ll need to add a balance method to the Account
so that we can run this code:

step_definitions_inside/03/src/test/java/nicebank/Steps.java
class Account {

public void deposit(int amount) {

• Click HERE to purchase this book now. discuss

Sketching Out the Domain Model • 7

http://media.pragprog.com/titles/srjcuc/code/step_definitions_inside/02/src/test/java/nicebank/Steps.java
http://media.pragprog.com/titles/srjcuc/code/step_definitions_inside/02/src/test/java/nicebank/Steps.java
http://media.pragprog.com/titles/srjcuc/code/step_definitions_inside/03/src/test/java/nicebank/Steps.java
http://media.pragprog.com/titles/srjcuc/code/step_definitions_inside/03/src/test/java/nicebank/Steps.java
http://pragprog.com/titles/srjcuc
http://forums.pragprog.com/forums/srjcuc

}

public int getBalance() {
return 0;

}
}

Notice that we’re just sketching out the interface to the class, rather than
adding any implementation to it. This way of working is fundamental to out-
side-in development. We try not to think about how the Account is going to
work yet but concentrate on what it should be able to do.

Now when we run the test, we get a nice helpful failure message:

Scenario: Successful withdrawal from an account in credit
Given I have deposited $100 in my account
java.lang.AssertionError: Incorrect account balance

- expected:<100> but was:<0>
at org.junit.Assert.fail(Assert.java:88)
at org.junit.Assert.failNotEquals(Assert.java:743)
at org.junit.Assert.assertEquals(Assert.java:118)
at org.junit.Assert.assertEquals(Assert.java:555)
at nicebank.Steps.iHaveDeposited$InMyAccount(Steps.java:29)
at *.Given I have deposited $100 in my account(cash_withdrawal.feature:3)

When I request $20
Then $20 should be dispensed

1 Scenarios (1 failed)
3 Steps (1 failed, 2 skipped)
0m0.076s

java.lang.AssertionError: Incorrect account balance
- expected:<100> but was:<0>

Now our step definition is much more robust, because we know it will sound
an alarm bell if it isn’t able to deposit the funds into the account as we’ve
asked it to do. Adding assertions to Given and When steps like this means that
if there’s ever a regression later in the project, it’s much easier to diagnose
because the scenario will fail right where the problem occurs. This technique
is most useful when you’re sketching things out; eventually, we’ll probably
move this check further down the testing stack into a unit test for the Account
class and take it out of the step definition.

Doing the Simplest Thing
We’re at a decision point here. We’ve effectively finished implementing our
first step definition, but we can’t move on to the next one until we’ve made

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/srjcuc
http://forums.pragprog.com/forums/srjcuc

some changes to the implementation of the Account class so that the step
passes.

You are
here

Write unit
tests for
Account

Implement
next step
definition

Features

System

It’s tempting to pause here, move the Account class into a separate file, and
start driving out the behavior we want using unit tests. We’re going to try to
resist that temptation for now and stay on the outside of the Account class. If
we can get a full tour through the scenario from this perspective, we’ll be
more confident in the design of the class’s interface once we do step inside
and start implementing it.

So, we’ll keep working on our very simple implementation of the Account class
that’s obviously incomplete but just right enough to make this first step pass.
Think of this like putting up scaffolding on a construction site: we’re going
to take it down eventually, but it will help things to stand up in the meantime.

Change Account to look like this, and now the first step should pass:

step_definitions_inside/04/src/test/java/nicebank/Steps.java
class Account {

private int balance;

public void deposit(int amount) {
balance += amount;

}

public int getBalance() {
return balance;

}
}

Good. We still have one issue left on our list, which is our use of int as our
balance. Now that our step is passing, we can do that refactoring with confi-
dence.

• Click HERE to purchase this book now. discuss

Sketching Out the Domain Model • 9

http://media.pragprog.com/titles/srjcuc/code/step_definitions_inside/04/src/test/java/nicebank/Steps.java
http://pragprog.com/titles/srjcuc
http://forums.pragprog.com/forums/srjcuc

Staying Honest with Transforms
Another issue we have with the first step definition is that our regular
expression is capturing an integer, but we would expect to be able to deposit
dollars and cents into the account. So let’s change the feature to demonstrate
this:

step_definitions_inside/05/src/test/resources/cash_withdrawal.feature
Feature: Cash Withdrawal

Scenario: Successful withdrawal from an account in credit
Given I have deposited $100.00 in my account
When I request $20
Then $20 should be dispensed

Now when we run mvn clean test it reports that we have an undefined step defi-
nition and tells us what regular expression we now need to use to match our
feature:

Feature: Cash Withdrawal

Scenario: Successful withdrawal from an account in credit
Given I have deposited $100.00 in my account
When I request $20
Then $20 should be dispensed

1 Scenarios (1 undefined)
3 Steps (2 skipped, 1 undefined)
0m0.000s

You can implement missing steps with the snippets below:

@Given("^I have deposited \\$(\\d+)\\.(\\d+) in my account$")
public void iHaveDeposited$InMyAccount(int arg1, int arg2) throws Throwable {

// Write code here that turns the phrase above into concrete actions
throw new PendingException();

}

Tests run: 5, Failures: 0, Errors: 0, Skipped: 4, Time elapsed: 0.458 sec

Cucumber has recognized two numbers in the step and has generated a reg-
ular expression that is capturing each separately and passing them as two
integers to our step definition. Rather than pass two integers around, we’re
going to use a Money class written specially for this example, which you can
find in src/main/java/nicebank.

• 10

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/srjcuc/code/step_definitions_inside/05/src/test/resources/cash_withdrawal.feature
http://pragprog.com/titles/srjcuc
http://forums.pragprog.com/forums/srjcuc

Seb says:

Do We Really Have to Reinvent Money?
You might think that a language like Java would have its own money class, but as
of this writing it doesn’t. There are a number of classes available, such as Joda
Money, but we’re still waiting for JSR 354 (which will define a Java Money class) to
be released.

In our step definition we can now create an instance of the Money class:

step_definitions_inside/06/src/test/java/nicebank/Steps.java
@Given("^I have deposited \\$(\\d+)\\.(\\d+) in my account$")
public void iHaveDeposited$InMyAccount(int dollars, int cents) throws Throwable {

Account myAccount = new Account();
Money amount = new Money(dollars, cents);
myAccount.deposit(amount);

Assert.assertEquals("Incorrect account balance -",
amount, myAccount.getBalance());

}

And we change our implementation of Account to handle deposits of Money:

step_definitions_inside/06/src/test/java/nicebank/Steps.java
class Account {

private Money balance = new Money();

public void deposit(Money amount) {
balance = balance.add(amount);

}

public Money getBalance() {
return balance;

}
}

This is fine, but it still means that we have to create an instance of Money in
every step definition that works with dollars and cents. It would be much
nicer if Cucumber could just pass a Money object directly to the step definition.

The first thing we need to do to make this happen is to change the step defi-
nition so that:

• the regular expression captures the whole amount in a single capture
group

• its signature expects a Money parameter

• Click HERE to purchase this book now. discuss

Staying Honest with Transforms • 11

http://media.pragprog.com/titles/srjcuc/code/step_definitions_inside/06/src/test/java/nicebank/Steps.java
http://media.pragprog.com/titles/srjcuc/code/step_definitions_inside/06/src/test/java/nicebank/Steps.java
http://pragprog.com/titles/srjcuc
http://forums.pragprog.com/forums/srjcuc

Auto-Conversion Magic

Have you wondered how Cucumber knows what arguments to use in the step definition
snippets it generates? First, it generates one argument per capture group in the reg-
ular expression. Then, for each capture group, if it matches only numbers it creates
an int parameter; otherwise it creates a String parameter. For example:

@Given("^a (\\w+) amount \\$(\\d+)$")
public void aDollarAmount$(String arg1, int arg2) throws Throwable {
}

What if you wanted to manipulate digits as a String? No problem—these snippets are
just a hint from Cucumber to you. If you’d like to work with a different type, then
just change the signature of the step definition, like so:

@Given("^a (\\w+) amount \\$(\\d+)$")
public void aDollarAmount$(String arg1, String arg2) throws Throwable {
}

Under the hood, Cucumber represents each capture group in the regular expression
as a String. Then, when calling the step definition it converts the String into the type
expected. If it can’t perform the conversion, it throws a cucumber.runtime.CucumberException,
but otherwise the conversion happens automatically—as if by magic.

step_definitions_inside/07/src/test/java/nicebank/Steps.java
@Given("^I have deposited \\$(\\d+\\.\\d+) in my account$")
public void iHaveDeposited$InMyAccount(Money amount) throws Throwable {

Account myAccount = new Account();
myAccount.deposit(amount);

Assert.assertEquals("Incorrect account balance -",
amount, myAccount.getBalance());

}

Now all we need to do is tell Cucumber how to convert a String object into a
Money object. One approach would be to give our Money class a single argument
constructor that takes a String. Cucumber would then automatically invoke
this constructor when calling the step definition, passing in the original String
that matched the regular expression in our capture group.

step_definitions_inside/07/src/main/java/nicebank/Money.java
public Money(String amount) {

Pattern pattern = Pattern.compile("^[^\\d]*([\\d]+)\\.([\\d][\\d])$");
Matcher matcher = pattern.matcher(amount);

matcher.find();
this.dollars = Integer.parseInt(matcher.group(1));
this.cents = Integer.parseInt(matcher.group(2));

}

• 12

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/srjcuc/code/step_definitions_inside/07/src/test/java/nicebank/Steps.java
http://media.pragprog.com/titles/srjcuc/code/step_definitions_inside/07/src/main/java/nicebank/Money.java
http://pragprog.com/titles/srjcuc
http://forums.pragprog.com/forums/srjcuc

But what if the Money didn’t have a String constructor and wasn’t ours to
modify? In that case, we’re going to need to learn about another Cucumber
feature, the Transformer class, which allows us to create the instances of Money
that we want without giving it a new constructor.

Transformers work on captured arguments. Each transform is responsible
for converting a captured String into something more meaningful. For example,
we can use a Transformer to take a String argument that contains a monetary
amount and turn it into an instance of our Money class. Let’s create a MoneyCon-
verter transformer and put it in a new folder, test/transforms:

step_definitions_inside/08/src/test/java/transforms/MoneyConverter.java
package transforms;

import cucumber.api.Transformer;

import nicebank.Money;

public class MoneyConverter extends Transformer<Money> {
public Money transform(String amount) {

String[] numbers = amount.split("\\.");

int dollars = Integer.parseInt(numbers[0]);
int cents = Integer.parseInt(numbers[1]);

return new Money(dollars, cents);
}

}

Then we annotate the parameter in the step definition to tell Cucumber which
Transformer to use:

step_definitions_inside/08/src/test/java/nicebank/Steps.java
@Given("^I have deposited \\$(\\d+\\.\\d+) in my account$")
public void iHaveDeposited$InMyAccount(

@Transform(MoneyConverter.class) Money amount)
throws Throwable {

Account myAccount = new Account();
myAccount.deposit(amount);

Assert.assertEquals("Incorrect account balance -",
amount, myAccount.getBalance());

}

Great! That code looks much cleaner and easier to read.

We can tidy this up a little further by moving the dollar sign into the capture
group. This makes the code more cohesive, because we’re bringing together

• Click HERE to purchase this book now. discuss

Staying Honest with Transforms • 13

http://media.pragprog.com/titles/srjcuc/code/step_definitions_inside/08/src/test/java/transforms/MoneyConverter.java
http://media.pragprog.com/titles/srjcuc/code/step_definitions_inside/08/src/test/java/nicebank/Steps.java
http://pragprog.com/titles/srjcuc
http://forums.pragprog.com/forums/srjcuc

the whole regular expression statement for capturing the amount of funds
deposited. It also gives us the option to capture other currencies in the future.

step_definitions_inside/09/src/test/java/nicebank/Steps.java
@Given("^I have deposited (\\$\\d+\\.\\d+) in my account$")
public void iHaveDeposited$InMyAccount(

@Transform(MoneyConverter.class) Money amount)
throws Throwable {

Account myAccount = new Account();
myAccount.deposit(amount);

Assert.assertEquals("Incorrect account balance -",
amount, myAccount.getBalance());

}

Of course we have to make a corresponding change to MoneyConverter to ensure
it handles the currency sign correctly. For the time being (since we’re not
handling multiple currencies) we’ll just discard the dollar sign:

step_definitions_inside/09/src/test/java/transforms/MoneyConverter.java
String[] numbers = amount.substring(1).split("\\.");

Let’s take another look at our to-do list. Using the transform has cleared up
the final point from the initial code review. As we went along, we collected a
new to-do list item: that we need to implement the Account properly, with unit
tests. Let’s leave that one on the list for now and move on to the next step of
the scenario.

• 14

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/srjcuc/code/step_definitions_inside/09/src/test/java/nicebank/Steps.java
http://media.pragprog.com/titles/srjcuc/code/step_definitions_inside/09/src/test/java/transforms/MoneyConverter.java
http://pragprog.com/titles/srjcuc
http://forums.pragprog.com/forums/srjcuc

