Extracted from:

Domain Modeling Made Functional

Tackle Software Complexity with
Domain-Driven Design and F#

This PDF file contains pages extracted from Domain Modeling Made Functional,
published by the Pragmatic Bookshelf. For more information or to purchase a
paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2018 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

The Pragmatic Bookshelf

Raleigh, North Carolina


http://www.pragprog.com

The .
Pragmatic
Ogrammers

Domain Modeling
Made Functional

Tackle Software Complexity with
Domain-Driven Design and F#

- ! . Scott Wlaschin

edited by Brian MacDonald



Domain Modeling Made Functional

Tackle Software Complexity with
Domain-Driven Design and F#

Scott Wlaschin

The Pragmatic Bookshelf

Raleigh, North Carolina



Pr matic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt

VP of Operations: Janet Furlow
Managing Editor: Brian MacDonald
Supervising Editor: Jacquelyn Carter
Indexing: Potomac Indexing, LLC
Copy Editor: Molly McBeath

Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2018 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.

ISBN-13: 978-1-68050-254-1

Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—January 2018


https://pragprog.com
support@pragprog.com
rights@pragprog.com

Modeling Complex Data

When we documented our domain on page ?, we used AND and OR to repre-
sent more complex models. In
algebraic type system and saw that it also used AND and OR to create complex

types from simple ones.

Let’s now take the obvious step and use the algebraic type system to model
our domain.

Modeling with Record Types

In our domain, we saw that many data structures were built from AND rela-
tionships. For example, our original, simple Order was defined like this:

data Order =
CustomerInfo
AND ShippingAddress
AND BillingAddress
AND list of OrderLines
AND AmountToBill

This translates directly to an F# record structure, like this:

type Order = {
CustomerInfo : CustomerInfo
ShippingAddress : ShippingAddress
BillingAddress : BillingAddress
OrderLines : OrderLine list
AmountToBill :

}

We have given each field a name (“CustomerInfo,” “ShippingAddress”) and a
type (Customerinfo, ShippingAddress).

Doing this shows a lot of still-unanswered questions about the domain—we
don’t know what these types actually are right now. Is ShippingAddress the same
type as BillingAddress? What type should we use to represent “AmountToBill”?

Ideally, we can ask our domain experts to help with this. For example, if your
experts talk about billing addresses and shipping addresses as different
things, it’s better to keep these logically separate, even if they have the same
structure. They may evolve in different directions as your domain understand-
ing improves or as requirements change.

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/swdddf
http://forums.pragprog.com/forums/swdddf

°6

Modeling Unknown Types

During the early stages of the design process, you often won’'t have definitive
answers to some modeling questions. For example, youll know the names of
types that you need to model, thanks to the ubiquitous language, but not
their internal structure.

This isn’t a problem—you can represent types of unknown structure with
best guesses, or alternatively you can model them as a type that’'s explicitly
undefined, one that acts as a placeholder, until you have a better understand-
ing later in the design process.

If you want to represent an undefined type in F#, you can use the exception
type exn and alias it to Undefined:

type Undefined = exn

You can then use the Undefined alias in your design model, like this:

type CustomerInfo = Undefined
type ShippingAddress = Undefined
type BillingAddress = Undefined
type OrderLine = Undefined

type BillingAmount = Undefined

type Order = {
CustomerInfo : CustomerInfo
ShippingAddress : ShippingAddress
BillingAddress : BillingAddress
OrderLines : OrderLine list
AmountToBill : BillingAmount
}

This approach means that you can keep modeling the domain with types and
compile the code. But when you try to write the functions that process the
types, you will be forced to replace Undefined with something a bit better.

Modeling with Choice Types

In our domain, we also saw many things that were choices between other
things, such as these:

data ProductCode =
WidgetCode
OR GizmoCode

data OrderQuantity =
UnitQuantity
OR KilogramQuantity

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/swdddf
http://forums.pragprog.com/forums/swdddf

Modeling Workflows with Functions ¢ 7

How can we represent these choices with the F# type system? With choice
types, obviously!
type ProductCode =

| Widget of WidgetCode
| Gizmo of GizmoCode

type OrderQuantity =
| Unit of UnitQuantity
| Kilogram of KilogramQuantity

Again, for each case we need to create two parts: the “tag” or case label (before
the “of’) and the type of the data that is associated with that case. The
example above shows that the case label (such as Widget) doesn’'t have to be
the same as the name of the type (WidgetCode) associated with it.

Modeling Workflows with Functions

We've now got a way to model all the data structures—the “nouns” of the
ubiquitous language. But what about the “verbs,” the business processes?
In this book, we will model workflows and other processes as function types.
For example, if we have a workflow step that validates an order form, we might
document it like this:

type ValidateOrder = UnvalidatedOrder-> ValidatedOrder

It’s clear from this code that the ValidateOrder process transforms an unvalidated
order into a validated one.

Working with Complex Inputs and Outputs

Every function has only one input and one output, but some workflows might
have multiple inputs and outputs. How can we model that? We'll start with
the outputs. If a workflow has an outputA and an outputB, then we can create a
record type to store them both. We saw this with the order-placing workflow:
the output needs to be three different events, so let’s create a compound type
to store them as one record:

type PlaceOrderEvents = {
AcknowledgmentSent : AcknowledgmentSent
OrderPlaced : OrderPlaced
BillableOrderPlaced : BillableOrderPlaced
}

Using this approach, the order-placing workflow can be written as a function
type, starting with the raw UnvalidatedOrder as input and returning the Place-
OrderEvents record:

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/swdddf
http://forums.pragprog.com/forums/swdddf

°8

type PlaceOrder = UnvalidatedOrder -> PlaceOrderEvents

On the other hand, if a workflow has an outputA or an outputB, then we can
create a choice type to store them both. For example, we briefly talked about
categorizing the inbound mail as quotes or orders on page ?. That process

had at least two different choices for outputs:

workflow "Categorize Inbound Mail" =
input: Envelope contents
output:
QuoteForm (put on appropriate pile)
OR OrderForm (put on appropriate pile)
OR ...

It’s easy to model this workflow: just create a new type, say CategorizedMail, to
represent the choices, and then have CategorizelnboundMail return that type. Our
model might then look like this:

type EnvelopeContents = EnvelopeContents of string
type CategorizedMail =

| Quote of QuoteForm

| Order of OrderForm

// etc

type CategorizeInboundMail = EnvelopeContents -> CategorizedMail
Now let’s look at modeling inputs. If a workflow has a choice of different inputs
(OR), then we can create a choice type. But if a process has multiple inputs

that are all required (AND), such as “Calculate Prices” (below), we can choose
between two possible approaches.

"Calculate Prices" =
input: OrderForm, ProductCatalog
output: PricedOrder

The first and simplest approach is just to pass each input as a separate
parameter, like this:

type CalculatePrices = OrderForm -> ProductCatalog -> PricedOrder

Alternatively, we could create a new record type to contain them both, such
as this CalculatePricesInput type:

type CalculatePricesInput = {
OrderForm : OrderForm
ProductCatalog : ProductCatalog
}

And now the function looks like this:

type CalculatePrices = CalculatePricesInput -> PricedOrder

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/swdddf
http://forums.pragprog.com/forums/swdddf

Modeling Workflows with Functions ¢ 9

Which approach is better? In the cases above, where the ProductCatalog is a
dependency rather than a “real” input, we want to use the separate parameter
approach. This lets us use the functional equivalent of dependency injection.
We'll discuss this in detail in Injecting Dependencies, on page ?, when we

implement the order-processing pipeline.

On the other hand, if both inputs are always required and are strongly con-
nected with each other, then a record type will make that clear. (In some sit-
uations, you can use tuples as an alternative to simple record types, but it’'s
generally better to use a named type.)

Documenting Effects in the Function Signature
We just saw that the ValidateOrder process could be written like this:

type ValidateOrder = UnvalidatedOrder -> ValidatedOrder

But that assumes that the validation always works and a ValidatedOrder is always
returned. In practice, of course, this would not be true, so it would better to
indicate this situation by returning a Result type (introduced on page ?) in
the function signature:

type ValidateOrder =
UnvalidatedOrder -> Result<ValidatedOrder,ValidationError list>

and ValidationError = {
FieldName : string
ErrorDescription : string

}

This signature shows us that the input is an UnvalidatedOrder and, if successful,
the output is a ValidatedOrder. But if validation failed, the result is a list of Vali-
dationError, which in turn contains a description of the error and which field it
applies to.

Functional programming people use the term effects to describe things that
a function does in addition to its primary output. By using Result here, we've
now documented that ValidateOrder might have “error effects.” This makes it
clear in the type signature that we can’t assume the function will always
succeed and that we should be prepared to handle errors.

Similarly, we might want to document that a process is asynchronous—it will
not return immediately. How can we do that? With another type of course!

In F#, we use the Async type to show that a function will have “asynchronous
effects.” So if ValidateOrder had async effects as well as error effects, then we
would write the function type like this:

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/swdddf
http://forums.pragprog.com/forums/swdddf

*10
type ValidateOrder =
UnvalidatedOrder -> Async<Result<ValidatedOrder,ValidationError list>>

This type signature now documents (a) when we attempt to fetch the contents
of the return value, the code won't return immediately and (b) when it does
return, the result might be an error.

Listing all the effects explicitly like this is useful, but it does make the type
signature ugly and complicated, so we would typically create a type alias for
this to make it look nicer.

type ValidationResponse<'a> = Async<Result<'a,ValidationError list>>
Then the function could be documented like this:

type ValidateOrder =
UnvalidatedOrder -> ValidationResponse<ValidatedOrder>

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/swdddf
http://forums.pragprog.com/forums/swdddf



