
Extracted from:

Domain Modeling Made Functional
Tackle Software Complexity with

Domain-Driven Design and F#

This PDF file contains pages extracted from Domain Modeling Made Functional,
published by the Pragmatic Bookshelf. For more information or to purchase a

paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2018 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Domain Modeling Made Functional
Tackle Software Complexity with

Domain-Driven Design and F#

Scott Wlaschin

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Managing Editor: Brian MacDonald
Supervising Editor: Jacquelyn Carter
Indexing: Potomac Indexing, LLC
Copy Editor: Molly McBeath
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2018 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-254-1
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—January 2018

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Fighting the Impulse to Do Database-Driven Design
At this point, if you are like most developers, you can’t help but start
sketching out a low-level design and implementation immediately.

For example, you might look at that order form and see that it consists of
customer information, some addresses, a list of order lines, and so on.

Customer

1..n

Order Table

CustomerId
ShippingAddressId
BillingAddressId
IsQuote

OrderLine Table

OrderId
ProductId
Quantity

Address

Product
n..1

n..1

n..1

If you have a lot of database
experience, your first instinct
might be to think about tables
and the relationships between
them. You might envision an
Order table, an OrderLine table,
and Customer, Address, and Product
tables. And then you’ll proba-
bly want to describe the rela-
tionships between them as
shown in the figure.

But if you do this, you are
making a mistake. In domain-
driven design we let the domain drive the design, not a database schema.

It’s better to work from the domain and to model it without respect to any
particular storage implementation. After all, in a real-world, paper-based
system, there is no database. The concept of a “database” is certainly not part
of the ubiquitous language. The users do not care about how data is persisted.

In DDD terminology this is called persistence ignorance. It is an important
principle because it forces you to focus on modeling the domain accurately,
without worrying about the representation of the data in a database.

Why is this important? Well, if you design from the database point of view all
the time, you often end up distorting the design to fit a database model.

As an example of the distortion that a database-driven model brings, we have
already ignored the difference between an order and a quote in the diagram
above. Sure, in the database we can have a flag to distinguish them, but the
business rules and validation rules are different. For example, we might later
learn that an Order must have a billing address but a Quote doesn’t. This is hard
to model with a foreign key. This subtlety has been lost in database design
because the same foreign key does dual duty for both types of relationships.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/swdddf
http://forums.pragprog.com/forums/swdddf

Of course, the design can be corrected to deal with it, and in the chapter on
persistence on page ?, we’ll see how to persist a domain-driven design into
a relational database. But for now we really want to concentrate on listening
to the requirements without prejudice.

Fighting the Impulse to Do Class-Driven Design
If you’re an experienced object-oriented developer, then the idea of not being
biased to a particular database model will be familiar, Indeed, object-oriented
techniques such as dependency injection encourage you to separate the
database implementation from the business logic.

But you, too, may end up introducing bias into the design if you think in
terms of objects rather than the domain.

For example, as Ollie is talking, you may be creating classes in your head,
like the figure on page 7.

Letting classes drive the design can be just as dangerous as letting a database
drive the design—again, you’re not really listening to the requirements.

In the preliminary design above we have separated orders and quotes, but
we have introduced an artificial base class, OrderBase, that doesn’t exist in the
real world. This is a distortion of the domain. Try asking the domain expert
what an OrderBase is!

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/swdddf
http://forums.pragprog.com/forums/swdddf

Customer

1..n

OrderBase

OrderLine

Quantity

Address

Product

n..1

n..1

n..1

Order

Quote

1..n

billin
g

addr
ess

shipp
ing

addr
ess

The lesson here is that we should keep our minds open during requirements
gathering and not impose our own technical ideas on the domain.

Documenting the Domain
OK, we want to avoid biasing ourselves with technical implementations, but
then how should we record these requirements?

We could use visual diagrams (such as UML), but these are often hard to
work with and not detailed enough to capture some of the subtleties of the
domain.

Later in this book we’ll see how to create an accurate domain model in code,
but for now, let’s just create a simple text-based language that we can use to
capture the domain model:

• For workflows, we’ll document the inputs and outputs and then just use
some simple pseudocode for the business logic.

• For data structures, we’ll use AND to mean that both parts are required,
such as in Name AND Address. And we’ll use OR to mean that either part is
required, such as in Email OR PhoneNumber.

• Click HERE to purchase this book now. discuss

Documenting the Domain • 7

http://pragprog.com/titles/swdddf
http://forums.pragprog.com/forums/swdddf

Using this mini-language, then, we can document the Place Order workflow
like this:

Bounded context: Order-Taking

Workflow: "Place order"
triggered by:

"Order form received" event (when Quote is not checked)
primary input:

An order form
other input:

Product catalog
output events:

"Order Placed" event
side-effects:

An acknowledgment is sent to the customer,
along with the placed order

And we can document the data structures associated with the workflow
like this:

bounded context: Order-Taking

data Order =
CustomerInfo
AND ShippingAddress
AND BillingAddress
AND list of OrderLines
AND AmountToBill

data OrderLine =
Product
AND Quantity
AND Price

data CustomerInfo = ??? // don't know yet
data BillingAddress = ??? // don't know yet

The Provide Quote workflow and its associated data structures can be docu-
mented in a similar way.

Note that we have not attempted to create a class hierarchy or database tables
or anything else. We have just tried to capture the domain in a slightly
structured way.

The advantage of this kind of text-based design is that it’s not scary to non-
programmers, which means it can be shown to the domain expert and worked
on together.

The big question is whether can we make our code look as simple as this, too.
In a following chapter, Domain Modeling with Types, we’ll try to do just that.

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/swdddf
http://forums.pragprog.com/forums/swdddf

