
Extracted from:

CoffeeScript
Accelerated JavaScript Development, Second Edition

This PDF file contains pages extracted from CoffeeScript, published by the Prag-
matic Bookshelf. For more information or to purchase a paperback or PDF copy,

please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2015 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

CoffeeScript
Accelerated JavaScript Development, Second Edition

Trevor Burnham

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at https://pragprog.com.

The team that produced this book includes:

Michael Swaine (editor)
Potomac Indexing (indexer)
Cathleen Small (copyeditor)
Dave Thomas (typesetter)
Janet Furlow (producer)
Ellie Callahan (support)

For international rights, please contact rights@pragprog.com.

Copyright © 2015 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-94122-226-3
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—February 2015

https://pragprog.com
rights@pragprog.com

Introduction
JavaScript was never meant to be the most important programming language
in the world. It was hacked together in ten days, with ideas from Scheme and
Self packed into a C-like syntax. Even its name was an awkward fit, referring
to a language with little in common besides a few keywords. (For the story
behind that, see Peter Seibel’s interview with Brendan Eich, the creator of
JavaScript, in Coders at Work [Sei09].) But once JavaScript was released,
there was no controlling it. As the only language understood by all major
browsers, JavaScript quickly became the lingua franca of the Web. And with
the introduction of Ajax in the early 2000s, what began as a humble scripting
language for enhancing web pages suddenly became a full-fledged rich
application development language.

As JavaScript’s star rose, discontent came from all corners. Some pointed to
its numerous little quirks and inconsistencies.1 Others complained about its
lack of classes and inheritance. And a new generation of coders, who had cut
their teeth on Ruby and Python, were stymied by its thickets of curly braces,
parentheses, and semicolons.

A brave few created frameworks for web application development that gener-
ated JavaScript code from other languages, notably Google’s GWT and 280
North’s Objective-J. But few programmers wanted to add a thick layer of
abstraction between themselves and the browser. No, they would press on,
dealing with JavaScript’s flaws by limiting themselves to “the good parts” (as
in the title of Douglas Crockford’s now-classic book).

And then CoffeeScript came along.

The New Kid in Town
On Christmas Day 2009, Jeremy Ashkenas first released CoffeeScript, a little
language he touted as “JavaScript’s less ostentatious kid brother.” The project

1. http://wtfjs.com/

• Click HERE to purchase this book now. discuss

http://wtfjs.com/
http://pragprog.com/titles/tbcoffee2
http://forums.pragprog.com/forums/tbcoffee2

quickly attracted hundreds of followers on GitHub as Ashkenas and other
contributors added a bevy of improvements each month. The language’s
compiler, originally written in Ruby, was replaced in March 2010 by one
written in CoffeeScript.

After its 1.0 release on Christmas 2010, CoffeeScript became one of GitHub’s
“most watched” projects. And the language attracted another flurry of attention
in April 2011, when David Heinemeier Hansson confirmed rumors that Cof-
feeScript support would be included in Ruby on Rails 3.1.

Why did this little language catch on so quickly? Three reasons come to mind:
familiarity, safety, and readability.

The Good Parts Are Still There
JavaScript is a vast language. It contains multitudes of features, which
obscure its essence. JavaScript offers many of the benefits of a functional
language while retaining the familiar feel of an imperative one. This subtle
power is one of the reasons that JavaScript tends to confound newcomers.
Functions can be passed around as arguments and returned from other
functions, and objects can have new methods added at any time. In short,
functions are first-class objects.

All that power is still there in CoffeeScript, but with a syntax that encourages
you to use it wisely. Gone is the function keyword, along with its accompanying
curly braces. Instead, blocks of function code are demarcated with -> or =>
and indentation. Likewise, the crucial yet often baffling this keyword has a
distinctive symbol to serve in its stead, @. These are small changes, but they
go a long way toward making the way a program works more obvious.

The Compiler Is Here to Help
Imagine a language with no syntax errors, a language where the computer
forgives you your typos and tries as best it can to comprehend the code you
give it. What a wonderful world that would be! Sure, the program wouldn’t
always run the way you expected, but hey, that’s what testing is for.

Now imagine that you write that code once and send it out to the world, typos
and all, and millions of computers work around your small mistakes in subtly
different ways. Suddenly statements that your computer silently skipped over
are crashing your entire app for thousands of users.

Sadly, that’s the world we live in. JavaScript has no standard interpreter.
Instead, hundreds of browsers and other environments run JavaScript in
their own way. Debugging cross-platform inconsistencies is a huge pain.

Introduction • iv

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/tbcoffee2
http://forums.pragprog.com/forums/tbcoffee2

CoffeeScript can’t cure all of these ills, but the compiler tries its best to gen-
erate JavaScript Lint-compliant output,2 which is a great filter for common
human errors and nonstandard idioms. And if you type something that just
doesn’t make any sense, such as 2 = 3, the CoffeeScript compiler will tell you.
Better to find out sooner than later.

It’s All So Clear Now
Writing CoffeeScript can be highly addictive. Why? Take this piece of Java-
Script:

function cube(num) {
return Math.pow(num, 3);

}
var list = [1, 2, 3, 4, 5];
var cubedList = [];
for (var i = 0; i < list.length; i++) {

cubedList.push(cube(list[i]));
}

Now here’s an equivalent snippet of CoffeeScript:

cube = (num) -> Math.pow num, 3
list = [1, 2, 3, 4, 5]
cubedList = (cube num for num in list)

For those of you keeping score, that’s half the character count and less than
half the line count! Those kinds of gains are common in CoffeeScript. And as
Paul Graham once put it, “Succinctness is power.”3

Shorter code is easier to read, easier to write, and, perhaps most critically,
easier to change. Gigantic heaps of code tend to lumber along, as any signifi-
cant modifications require a Herculean effort. But bite-sized pieces of code
can be revamped in a few swift keystrokes, encouraging a more agile, iterative
development style.

It’s worth adding that switching to CoffeeScript isn’t an all-or-nothing
proposition—CoffeeScript code and JavaScript code can interact freely. Cof-
feeScript’s strings are just JavaScript strings, and its numbers are just
JavaScript numbers. Even its classes work in JavaScript frameworks like
Backbone.js.4 So don’t be afraid of calling JavaScript code from CoffeeScript
code or vice versa. We’ll talk about using CoffeeScript with two of JavaScript’s

2. http://www.javascriptlint.com/
3. http://www.paulgraham.com/power.html
4. http://documentcloud.github.com/backbone/

• Click HERE to purchase this book now. discuss

The New Kid in Town • v

http://www.javascriptlint.com/
http://www.paulgraham.com/power.html
http://documentcloud.github.com/backbone/
http://pragprog.com/titles/tbcoffee2
http://forums.pragprog.com/forums/tbcoffee2

most popular libraries in Chapter 5, Web Applications with jQuery and Back-
bone.js, on page ?.

But enough ancient history. Coding is believing, everything else is just meta,
and as Jeff Atwood once said, “Meta is murder.”5 So let’s talk a little bit about
the book you’re reading now, and then—in just a few pages, I promise!—we’ll
start banging out some code.

Who This Book Is For
If you’re interested in learning CoffeeScript, you’ve come to the right place!
However, because CoffeeScript is so closely linked to JavaScript, there are
really two languages running through this book—and not enough pages to
teach you both. Therefore, I’m going to assume that you know some JavaScript.

You don’t have to be John “JavaScript Ninja” Resig. In fact, if you’re only an
amateur JavaScripter, great! You’ll learn a lot about JavaScript as you go
through this book. Check the footnotes for links to additional resources that
I recommend. If you’re new to programming entirely, you should definitely
check out Eloquent JavaScript [Hav11], which is also available in an interactive
online format.6 If you’ve dabbled a bit but want to become an expert, pick up
Effective JavaScript [Her12].7 And if you want a comprehensive reference, no
one does it better than the Mozilla Developer Network.8

You may notice that I talk about Ruby a lot in this book. Ruby inspired many
of CoffeeScript’s great features, such as implicit returns, splats, and postfix
conditionals. And thanks to the Rails Asset Pipeline, which makes CoffeeScript
compilation fully automatic, CoffeeScript has a huge following in the Ruby
world. So if you’re a Rubyist, great! You’ve got a head start. If not, don’t sweat
it; everything will fall into place once you have a few examples under your
belt.

If anything in the book doesn’t make sense to you, I encourage you to post a
question about it on the book’s forum.9 While I try to be clear, the only entities
to whom programming languages are completely straightforward are computers
—and they buy very few books.

5. http://www.codinghorror.com/blog/2009/07/meta-is-murder.html
6. http://eloquentjavascript.net/
7. http://effectivejs.com/
8. https://developer.mozilla.org/en/JavaScript/Guide
9. https://forums.pragprog.com/forums/347

Introduction • vi

• Click HERE to purchase this book now. discuss

http://www.codinghorror.com/blog/2009/07/meta-is-murder.html
http://eloquentjavascript.net/
http://effectivejs.com/
https://developer.mozilla.org/en/JavaScript/Guide
https://forums.pragprog.com/forums/347
http://pragprog.com/titles/tbcoffee2
http://forums.pragprog.com/forums/tbcoffee2

Embedding JavaScript in CoffeeScript

This is as good a place as any to mention that you can stick JavaScript inside of
CoffeeScript code by surrounding it with backticks, like so:

console.log `impatient ? useBackticks() : learnCoffeeScript()`

The CoffeeScript compiler simply ignores everything between the backticks. That
means that if, for instance, you declare a variable between the backticks, that variable
won’t obey conventional CoffeeScript scope rules.

In all my time writing CoffeeScript, I’ve never once needed to use backtick escapes.
They’re an eyesore at best and dangerous at worst. So in the immortal words of Troy
McClure: “Now that you know how it’s done—don’t do it.”

How This Book Is Organized
We’ll start our journey by introducing the tools you’ll need to compile, run,
and debug CoffeeScript code. After that, the next three chapters will take you
through the nuts and bolts of the language. Each of those chapters includes
a small command-line project at the end. Finally, the last three chapters are
dedicated to building and testing a Trello-like web application called Coffee-
Tasks.

To master CoffeeScript, you’ll need to know how it works with the rest of the
JavaScript universe. So after learning the basics of the language, we’ll take
brief tours of jQuery, the world’s most popular JavaScript framework, and
Node.js, an exciting new project that lets you run JavaScript outside of the
browser. While we won’t go into great depth with either tool, we’ll see that
they go with CoffeeScript like chocolate and peanut butter. And by combining
their powers, we’ll be able to write an entire task management app in a matter
of hours.

The code presented in this book, as well as errata and discussion forums,
can be found on its PragProg page: http://pragprog.com/titles/tbcoffee2/coffeescript

What’s Changed Since CoffeeScript 1.0.0?
Despite being a very young language, CoffeeScript has been remarkably stable
in the years since its 1.0.0 release. As of this writing, the latest release is
1.8.0. For the most part, code written for CoffeeScript 1.0.0 will be accepted
by the CoffeeScript 1.8.0 compiler, and vice versa. The few exceptions mainly
have to do with syntactic edge cases involving implicit parentheses and
indentation. Those who like to keep their code as paren-free as possible will

• Click HERE to purchase this book now. discuss

How This Book Is Organized • vii

http://pragprog.com/titles/tbcoffee2/coffeescript
http://pragprog.com/titles/tbcoffee2
http://forums.pragprog.com/forums/tbcoffee2

be happy to know that ever since CoffeeScript 1.7.0, chaining code like this
has worked as expected:

$('h1')
.slideDown 100, => $('h2').show()
.fadeIn 300

Personally, I prefer to use explicit parentheses in most cases, and you’ll see
that preference expressed in the code shown throughout this book. But this
change has definitely made CoffeeScript’s behavior in the absence of paren-
theses more aligned with human expectations.

But perhaps the biggest leap CoffeeScript has taken in the last few years is
not in the language itself, but in the tooling. Since CoffeeScript 1.6.1, the
compiler has included the ability to generate source maps, a debugger’s dream
come true. Before that, having to look at compiled JavaScript when an error
was thrown was one of the most frequent complaints developers had about
CoffeeScript. Happily, source maps solve that problem. We’ll talk more about
source maps in Using Source Maps, on page ?.

Another tooling addition is Literate CoffeeScript, which embodies an approach
to coding advocated by the great Donald Knuth. In a .coffee file, you embed
comments in code. But in a .litcoffee file, you do the opposite, writing a docu-
ment in Markdown syntax with embedded snippets of code. The compiler
simply extracts those snippets and ignores the rest of the code. The result is
a human-readable narrative that doubles as a machine-readable program.
Although I don’t use Literate CoffeeScript in this book, I definitely think it’s
a cool concept.

For a (nearly) comprehensive list of changes the CoffeeScript project has gone
through over time, see the changelog.10

The CoffeeScript Community
A great language is of little use without a strong community. If you run into
problems, who you gonna call?

Posting a question to StackOverflow11 (being sure to give your question the
coffeescript tag) is a terrific way to get help, especially if you include a snippet
of the code that’s hassling you. If you need a more immediate answer, you
can usually find friendly folks in the #coffeescript channel on Freenode IRC.
For more problems, such as possible bugs, you should create an issue on

10. http://coffeescript.org/#changelog
11. http://stackoverflow.com

Introduction • viii

• Click HERE to purchase this book now. discuss

http://coffeescript.org/#changelog
http://stackoverflow.com
http://pragprog.com/titles/tbcoffee2
http://forums.pragprog.com/forums/tbcoffee2

GitHub.12 You can also request new language features there. CoffeeScript is
still evolving, and the whole team welcomes feedback.

What about documentation? You’ve probably already seen the snazzy official
docs.13 There’s also an official wiki.14 And now there’s this book.

Which brings us to me. I run @CoffeeScript on Twitter; you can reach me
there or by good old-fashioned email at trevorburnham@gmail.com.

These are exciting times for web development. Welcome aboard!

12. http://github.com/jashkenas/coffee-script/issues
13. http://coffeescript.org
14. http://github.com/jashkenas/coffee-script/wiki

• Click HERE to purchase this book now. discuss

The CoffeeScript Community • ix

http://github.com/jashkenas/coffee-script/issues
http://coffeescript.org
http://github.com/jashkenas/coffee-script/wiki
http://pragprog.com/titles/tbcoffee2
http://forums.pragprog.com/forums/tbcoffee2

