
Extracted from:

Test-Driven React
Find Problems Early, Fix Them Quickly, Code with Confidence

This PDF file contains pages extracted from Test-Driven React, published by the
Pragmatic Bookshelf. For more information or to purchase a paperback or PDF

copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2019 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Test-Driven React
Find Problems Early, Fix Them Quickly, Code with Confidence

Trevor Burnham

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Managing Editor: Susan Conant
Development Editor: Jacquelyn Carter
Copy Editor: Jasmine Kwityn
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2019 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-646-4
Book version: P1.0—June 2019

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Getting Started with Styled-Components
As apps grow, they can contain thousands of style rules—too many for a
single person to keep track of. This leads to unintended conflicts. For example,
which of the styles below will apply to a disabled button with the white class?

// StylesheetA.css
button.white {

background-color: white;
color: black;

}

// StylesheetB.css
button:disabled {

background-color: grey;
color: darkgrey;

}

The answer is that it depends on the order the stylesheets are loaded in, as
both selectors have the same level of specificity. This is a very fragile state of
affairs for a complex app. Worse, removing style rules becomes a risky
endeavor. Let’s say that your app has this style rule:

p.alert-message {
color: red;

}

You search your codebase for alert-message, find no results, and so you remove
the style. But your search didn’t match this React code:

<p className={`${urgency}-message`}>This is an alert!</p>

The CSS-in-JS paradigm, exemplified by styled-components,4 greatly alleviates
these problems by allowing a component’s style rules to be written as a
function of its props. This offers a number of advantages:

• No need to search your codebase to find out which styles are associated
with a component. Its styles are either in the same module, or imported
like any other dependency.

• Styles are generated as a function of their component’s props and state,
just like markup.

• Styles can be subjected to unit tests.

4. https://www.styled-components.com/

• Click HERE to purchase this book now. discuss

https://www.styled-components.com/
http://pragprog.com/titles/tbreact
http://forums.pragprog.com/forums/tbreact

And unlike the style prop, style rules generated by styled-components have
the full range of functionality of ordinary CSS, including support for media
queries, keyframe animations, and pseudo-classes.

Let’s start adding some style to test-driven-carousel. Install the styled-components
package as a dependency:

$ npm install --save styled-components@4.1.1
+ styled-components@4.1.1

So far, this book’s modus operandi has been to present tests first, then the
code to satisfy these tests. This is, after all, a book about TDD, and TDD is
usually taken to mean “writing tests first.” But on a deeper level, TDD is about
seeking useful feedback for your code as quickly as possible. Tests are just
one possible source of feedback. And when it comes to styles, the most useful
source of feedback is usually seeing those styles.

So set tests aside for now. All you’ll need for this section is a live dev server.

Creating a Styled Component
Currently, the created by CarouselSlide is unstyled, which means that it
scales to whatever the original size of the image is. That means that the
carousel jarringly expands and contracts as users move from slide to slide.
Worse, it’ll push other page content around in the process. Clearly, this needs
to be fixed!

To do that, we’ll replace the unstyled element with a component gener-
ated by styled-components:

// src/CarouselSlide.js
import React from 'react';
import PropTypes from 'prop-types';
import styled from 'styled-components';

const Img = styled.img`
object-fit: cover;
width: 100%;
height: 500px;

`;

const CarouselSlide = ({ imgUrl, description, attribution, ...rest }) => (
<figure {...rest}>

<figcaption>
{description} {attribution}

</figcaption>
</figure>

);
...

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/tbreact
http://forums.pragprog.com/forums/tbreact

styled.img is a function that generates a component that renders an tag
with the given styles. When an instance of that Img component is mounted,
styled-components will dynamically insert a style rule with the styles you
provided, using a class name selector based on the hash of those styles.

There’s some syntactic fanciness here in the form of an ES6 feature called
tagged templates:5 If you put a function directly in front of a template string
(the kind delimited by backticks), that function is called with the template
string as an argument.

In the case of Img, you could use the normal function call syntax, since the
string with the styles is a constant. Where the tagged template syntax unlocks
new possibilities is when the string has interpolations (the ${...} syntax): each
piece of the interpolated string is passed in to the function as a separate
argument. That gives the tag function the chance to process interpolated
variables. As we’ll soon see, styled-components takes advantage of this power.

As soon as you hit save, you should see the difference in your browser. Before,
the size of the tag was determined by the image file it loaded. Now, it
takes up the full width of its container and has 500px of height. The object-fit:
cover rule means that the image keeps its aspect ratio as it expands or con-
tracts to those dimensions, getting clipped as needed.

Why 500px? Really, the height of the image should be determined by the app
rendering the carousel component. So let’s make these styles dynamic:

// src/CarouselSlide.js
import React from 'react';
import PropTypes from 'prop-types';
import styled from 'styled-components';

const Img = styled.img`
object-fit: cover;
width: 100%;
height: ${props =>❶

typeof props.imgHeight === 'number'
? `${props.imgHeight}px`
: props.imgHeight};

`;

const CarouselSlide = ({
imgUrl,
imgHeight,
description,
attribution,
...rest

5. https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals#Tagged_templates

• Click HERE to purchase this book now. discuss

Getting Started with Styled-Components • 7

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals#Tagged_templates
http://pragprog.com/titles/tbreact
http://forums.pragprog.com/forums/tbreact

}) => (
<figure {...rest}>

<figcaption>
{description} {attribution}

</figcaption>
</figure>

);

CarouselSlide.propTypes = {
imgHeight: PropTypes.oneOfType([PropTypes.number, PropTypes.string]),❷
imgUrl: PropTypes.string.isRequired,
description: PropTypes.node.isRequired,
attribution: PropTypes.node,

};

CarouselSlide.defaultProps = {❸
imgHeight: 500,

};

export default CarouselSlide;

❶ This is where styled-components really gets exciting: interpolated values
in the style template can be a function of the component’s props! Whereas
ordinary CSS is static, these styles are completely dynamic. If the imgHeight
prop changes, the styles update automatically.

❷ This code declares imgHeight as a prop that can be either a number (indi-
cating a px value) or a string (such as '100vh'). Since it doesn’t have isRequired
it can also be null; in that case, styled-components would simply omit the
height rule from the generated styles.

❸ A React component’s defaultProps are used as fallbacks when the prop’s
given value is undefined. Whereas propTypes are only used during develop-
ment, defaultProps are always applied.

Note that the src prop passed to Img is passed through to the element
it renders. Styled-components filters out props like imgHeight that aren’t valid
DOM attributes. This means you should be careful what prop names you use
for styling. If, for example, we’d named the prop height instead of imgHeight,
then it would’ve been passed down as the height DOM attribute of the .

Right now, imgHeight can be overridden on a slide-by-slide basis, since Carousel
passes the whole slide data object down to CarouselSlide as props. But in most
cases, the Carousel consumer will want it to have a consistent height. So let’s
add a prop to Carousel that overrides the default imgHeight on CarouselSlide:

// src/Carousel.js
...
export default class Carousel extends React.PureComponent {

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/tbreact
http://forums.pragprog.com/forums/tbreact

static propTypes = {
defaultImgHeight: CarouselSlide.propTypes.imgHeight,
slides: PropTypes.arrayOf(PropTypes.shape(CarouselSlide.propTypes))
.isRequired,

};

static defaultProps = {
defaultImgHeight: CarouselSlide.defaultProps.imgHeight,❶

};
...
render() {

const { defaultImgHeight, slides, ...rest } = this.props;
return (
<div {...rest}>

<CarouselSlide
imgHeight={defaultImgHeight}❷
{...slides[this.state.slideIndex]}

/>
<CarouselButton data-action="prev" onClick={this.handlePrevClick}>

Prev
</CarouselButton>
<CarouselButton data-action="next" onClick={this.handleNextClick}>

Next
</CarouselButton>

</div>
);

}
}

❶ The default value from CarouselSlide’s imgHeight is reused as the default value
for defaultImgHeight. Functionally, this is redundant, but defaultProps is also
commonly used for documentation, as we’ll see in Chapter 6, Continuous
Integration and Collaboration, on page ?.

❷ Importantly, defaultImgHeight is passed down as imgHeight before the slide
data object spread, giving the latter precedence. If it were the other way
around, individual slides would be unable to override imgHeight.

If you feel naked without test coverage for all of these changes, you can skip
ahead to Testing Styled Components, on page ?, then come back for a detour
into styled-components tooling.

So: How did styled-components get our styles into the tag? If you inspect
one of the tags in the browser, as in the next screenshot, you’ll see that
its class attribute is full of gobbledigook. Something like class="sc-bdVaJa hhfYDU".
The styled-components library generated these class names for you, and
injected a corresponding style rule into a <style> tag in the <head> of the page.

• Click HERE to purchase this book now. discuss

Getting Started with Styled-Components • 9

http://pragprog.com/titles/tbreact
http://forums.pragprog.com/forums/tbreact

In fact, the element has two classnames generated by styled-compo-
nents. One of these, the one with the sc- prefix, is a stable class name that
styled-components uses for selectors. The other, the one the styles are applied
to, is generated from a hash of the styles. In practice, the distinction is just
an implementation detail. You should never, ever copy any class names gen-
erated by styled-components in your code. All generated class names are
subject to change.

Having unreadable class names is an unfortunate drawback of styled-compo-
nents. Luckily, it can be mitigated with help from our good friend Babel.

• 10

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/tbreact
http://forums.pragprog.com/forums/tbreact

