
Extracted from:

Beginning Mac Programming
Develop with Objective-C and Cocoa

This PDF file contains pages extracted from Beginning Mac Programming, published by

the Pragmatic Bookshelf. For more information or to purchase a paperback or PDF copy,

please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This is

available only in online versions of the books. The printed versions are black and white.

Pagination might vary between the online and printer versions; the content is otherwise

identical.

Copyright © 2009 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any

means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragprog.com




Many of the designations used by manufacturers and sellers to distinguish their prod-

ucts are claimed as trademarks. Where those designations appear in this book, and The

Pragmatic Programmers, LLC was aware of a trademark claim, the designations have

been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The

Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher

assumes no responsibility for errors or omissions, or for damages that may result from

the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team

create better software and have more fun. For more information, as well as the latest

Pragmatic titles, please visit us at

http://www.pragprog.com

Copyright © 2010 Tim Isted.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-

ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 1-934356-51-4

ISBN-13: 978-1-934356-51-7

Printed on acid-free paper.

P1.0 printing, March 2010

Version: 2010-5-16

http://www.pragprog.com


CLASS METHODS 113

6.3 Class Methods

You have just seen how to refactor the code for circumference genera-

tion into a separate method. It seems a little strange, however, to have

that method as part of the NotifyingClass object. Mathematical calcula-

tions don’t seem to have much to do with notifying the user.

Furthermore, this circumference calculation is the kind of thing we

might want to reuse in the future. We might have another part of our

application (or even a different application altogether) that needs to

calculate a circumference given a radius, and it would be strange to

have to link to or generate a NotifyingClass object just to perform this

calculation.

The alternative is to factor the circumferenceFromRadius: method into a

separate utility class, and we’ll do that now. We can also avoid having

to get hold of an instance of that new class by writing our code into

what is known as a class method.

Rather than calling the method on an instance of the object like this:

[someInstanceOfNotifyingClass circumferenceFromRadius:5.0];

e.g.,

[self circumferenceFromRadius:5.0];

we can just call the method on the name of the class itself, like this:

[ClassName circumferenceFromRadius:5.0];

e.g.,

[MathUtilities circumferenceFromRadius:5.0];

If we write a class called MathUtilities, we don’t need to create an instance

of that class to use its class methods.

Writing a New Class

Let’s try this out now by creating a new class in the current project.

Right-click (or C-click) the Classes group in the Xcode project browser

for TextApp, choose Add > New File..., and pick Objective-C class. Name

this new class “MathUtilities,” and tell Xcode to generate the necessary

.h file for you.

Once the files are created, we can add a new method signature into the

interface for the MathUtilities class. Back in Section 4.1, Defining a New

Method, on page 58, we saw a selection of method signatures from the

NSObject interface. Some of these had a + sign at the front, and some

had a - sign. It is this + or - that specifies whether a method is a class

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/tibmac


CLASS METHODS 114

method or an instance method. So far we’ve been working with methods

with a - at the front, like this:

- (float)generateValue

{

«generation code»

}

which are methods that can be called on an instance of the class. To

write our math utility method, however, we’re going to need to use the

+ class method specifier.

We’re now working with two separate classes, each with an interface

and an implementation file. Take care to make sure that you put the

right code in the right file! Change the interface for the MathUtilities class

(MathUtilities.h) by adding the following:

@interface MathUtilities : NSObject {

}

+ (float)circumferenceFromRadius:(float)radius;

@end

Next, write the method implementation (MathUtilities.m) like this:

@implementation MathUtilities

+ (float)circumferenceFromRadius:(float)radius

{

float circumference = 2 * pi * radius;

return circumference;

}

@end

Finally, we need to change our NotifyingClass code to call this new class

method. We should probably remove the old circumferenceFromRadius:

code from this class to avoid any confusion, so first remove the method

signature in the interface file (NotifyingClass.h) so it looks like this:

@interface NotifyingClass : NSObject {

IBOutlet NSTextView *textView;

IBOutlet NSTextField *textField;

}

- (IBAction)displaySomeText:(id)sender;

- (float)generateValue;

@end

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/tibmac


CLASS METHODS 115

To call our new circumferenceFromRadius: class method, we need to

change the call inside the NotifyingClass’s generateValue method from [self

circumferenceFromRadius:radius] to [MathUtilities circumferenceFromRadius:

radius].

It should now be pretty clear why it’s so important to follow the nam-

ing convention of capitalized class names and noncapitalized variable

names. It’s possible, for example, to realize instantly that [MathUtilities

circumferenceFromRadius:radius] is a call to a class method because of the

capitalization of MathUtilities.

Change your implementation for NotifyingClass (NotifyingClass.m) so that

it looks something like this:

@implementation NotifyingClass

- (IBAction)displaySomeText:(id)sender

{

float circumference = [self generateValue];

[textView insertText:[NSString

stringWithFormat:@"The circumference is: %f\n", circumference]];

}

- (float)generateValue

{

float radius = [textField floatValue];

float circumference = [MathUtilities circumferenceFromRadius:radius];

return circumference;

}

@end

With these changes made, let’s try to build the project and run the

application to make sure everything still works. Sadly, you’ll be greeted

by an error in Xcode, as shown in Figure 6.4, on the following page stat-

ing “error: ‘MathUtilities’ undeclared”—this is a slightly strange error,

but it indicates that Xcode has no idea what a MathUtilities object is

within this NotifyingClass file.

To solve this problem, we need to tell Xcode what the interface to a

MathUtilities object looks like. How do we do this? Well, we need to tell it

to look inside the MathUtilities.h interface file. Back near the beginning of

the book, you might remember that you saw a statement looking like

this:

#import <Cocoa/Cocoa.h>

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/tibmac


CLASS METHODS 116

Figure 6.4: The error in Xcode about our use of the MathUtilities class

This appeared in the main.m file for the project. Subsequently, you

might have noticed #import statements like this one at the top of each

file we’ve worked with. The NotifyingClass.m file, for example, includes

the statement #import "NotifyingClass.h" at the top to tell the compiler to

include the interface description for the NotifyingClass class.

So, to tell the compiler about the MathUtilities class, we just need to add

in an #import statement for the MathUtilities.h interface file like this:

#import "NotifyingClass.h"

#import "MathUtilities.h"

@implementation NotifyingClass

«implementation continues»

Now, when you build the project, the error disappears, and everything

behaves as expected.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/tibmac


PASSING VALUES BY REFERENCE 117

If we wanted, we could reuse the MathUtilities class in any future project

just by including its interface and implementation files and using the

relevant #import statement.

Class Method Limitations

Class methods are great when you have useful utility code, but since

they aren’t attached to any particular instance of a class, they obvi-

ously have no access to any of the instance variables on a class. If

we’d defined a class method for NotifyingClass, for example, that method

wouldn’t have been able to access the textView or textField outlets, since

those outlets have to be set for each particular instance. If you tried to

access them, Xcode would complain and refuse to compile your code.

We’ll see a number of examples of class methods in later chapters of this

book when we use several Apple-provided utility methods for classes in

the Cocoa Framework.

6.4 Passing Values by Reference

You might remember from Section 5.4, Using Memory Addresses for

Access, on page 95 that we mentioned it was possible to allow methods

to access variables that aren’t currently “in scope” by letting them know

the address of the variable.

One of the main uses of this is to allow you to return more than one

value when a method finishes. Our current generateValue method just

returns the calculated circumference. It might be nice to be able to pass

back the value that was used to generate the circumference in the first

place, but a return statement only can be used to return a single value

or object.

The solution in this case is to declare a variable in our displaySomeText:

method that will eventually hold the radius supplied by the user. We’ll

pass the address of this variable when we call the generateValue method

so that the generateValue method can change the value of the variable

held at that address.

Let’s start by changing the method signature for generateValue. It needs

to accept the address of a scalar variable (i.e., a pointer) as its only

argument. Since we’re dealing with a float variable, that’s the type of

pointer we need to use.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/tibmac


The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers

will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Beginning Mac Programming’s Home Page

http://pragprog.com/titles/tibmac

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com/titles/tibmac.

Contact Us
Online Orders: www.pragprog.com/catalog

Customer Service: support@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

Contact us: 1-800-699-PROG (+1 919 847 3884)

http://pragprog.com/titles/tibmac
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/tibmac
www.pragprog.com/catalog



