
Extracted from:

Beginning Mac Programming
Develop with Objective-C and Cocoa

This PDF file contains pages extracted from Beginning Mac Programming, published by

the Pragmatic Bookshelf. For more information or to purchase a paperback or PDF copy,

please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This is

available only in online versions of the books. The printed versions are black and white.

Pagination might vary between the online and printer versions; the content is otherwise

identical.

Copyright © 2009 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any

means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragprog.com




Many of the designations used by manufacturers and sellers to distinguish their prod-

ucts are claimed as trademarks. Where those designations appear in this book, and The

Pragmatic Programmers, LLC was aware of a trademark claim, the designations have

been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The

Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher

assumes no responsibility for errors or omissions, or for damages that may result from

the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team

create better software and have more fun. For more information, as well as the latest

Pragmatic titles, please visit us at

http://www.pragprog.com

Copyright © 2010 Tim Isted.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-

ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 1-934356-51-4

ISBN-13: 978-1-934356-51-7

Printed on acid-free paper.

P1.0 printing, March 2010

Version: 2010-5-16

http://www.pragprog.com


THE TARGET -ACTION MECHANISM 61

Figure 4.1: The Go to Counterpart quick-switch icon in Xcode

For now, we’ll just output a message to Xcode’s debugger console to let

us know when this method is called, so add the following line of code:

- (void)displaySomeText

{

NSLog(@"displaySomeText just got called!");

}

If you Build & Run at this point, you’ll find that TextApp launches fine,

but no friendly messages appear in the debugger console. We removed

the code responding to the init message earlier, and at the moment our

new displaySomeText method never gets called. All we’ve done so far is

define the code that would be called if the displaySomeText message was

received, but it never is.

4.2 The Target-Action Mechanism

Our aim is to send the displaySomeText message to our NotifyingClass

object when the user clicks a button in our TextApp application. The

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/tibmac


THE TARGET -ACTION MECHANISM 62

Cocoa framework provides us with a nifty little technique to help with

this, called target-action.

Certain objects offered by the Cocoa framework allow you to provide

them with a target object and specify an action—a message to be sent

to that object. One of the objects supporting such a mechanism is an

NSButton. This class is used to create a number of different types of Mac

OS X buttons; its default style is the one we’ll be using shortly when

we add a button to TextApp’s user interface. Once we’ve created an

NSButton instance in Interface Builder, we can tell the button about our

NotifyingClass instance and specify that the relevant action is to call its

displaySomeText method when the user clicks the button.

At this point we need to make a couple of small changes to our existing

method definition for displaySomeText so we can use it with Interface

Builder and target-action. For Cocoa desktop applications on the Mac,

a method to be called in a target-action situation needs to conform to

a specific signature format. The method needs to be able to accept a

single argument on it.

We’ll discuss arguments in Chapter 6, Passing Information Around, on

page 99, but if you take a quick look back now to earlier in this chapter

at the format for a message signature, you’ll see that there are “optional

bits” that can be put on the end of the signature style we’ve seen so far,

as in one example from NSObject.h:

+ (id)allocWithZone:(NSZone *)zone;

If a message name has a colon on the end of it (that’s : rather than

the end-of-line semicolon ;), it means that it accepts one or more argu-

ments. An argument is used to pass some information along with a

message. Back in our housing example, when the property developer

object sends a message to the builder object to buildHouse:, it needs to

specify which house to build. This would be offered as an argument,

like this:

- (void)buildHouse:(House *)houseToBeBuilt;

After the colon comes something in parentheses with an asterisk—

(House *)—that specifies what kind of information is being provided,

followed by a name to be assigned to the provided information. Don’t

worry if this isn’t immediately clear in your head; we’ll be covering vari-

ous things in the next chapter that will help you to understand it. We’ll

continue using it in this chapter, though, so at this point, just follow

along with the syntax.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/tibmac


THE TARGET -ACTION MECHANISM 63

+ (id) allocWithZone:(NSZone *) zone;

- (void) buildHouse: (House *) houseToBeBuilt;

± («type expected in return»)methodName:(«type of info provided»)«name for info»;

The buildHouse: method (notice we’re putting the colon on the end of it

to indicate it accepts an argument) expects to receive a House object

when it’s called, identifying the particular house to be built. Similarly,

the allocWithZone: method expects an NSZone object to identify the zone

to be used.

Returning to target-action, I stated a little earlier that a method needs

to accept a single argument to work for target-action. This argument

happens to be used to identify the object that sent the message in the

first place. When we connect a button in TextApp to target our Notify-

ingClass instance, the button would send the message and specify that

it was the sender. The signature therefore needs to look something like

this:

- (void)displaySomeText:(id)sender;

The id keyword here is used to specify that some kind of object will be

provided as the sender. Again, we’ll be talking more about id later.

There’s just one last thing we need to change slightly on this method

declaration, since we’re going to be using Interface Builder to connect

the target and action on a new NSButton object.

Communication Between Xcode and Interface Builder

Remember how we created an object instance in Interface Builder (that

blue cube thing) in the previous chapter and set its class to Notifying-

Class in the inspector? When we did that, Interface Builder managed to

guess the rest of the class name after we’d typed only a few characters.

This is because Interface Builder and Xcode “talk to each other” behind

the scenes. Some things happen automatically (like IB having knowl-

edge of classes for which you’ve provided class descriptions in an Xcode

project), whereas other things happen when you use specific keywords

in your code files.

This is one case where we need to use such a keyword. To specify that

our method is an action that can be connected to a control object (like

an NSButton) in Interface Builder, we need to change the void keyword

into IBAction:

- (IBAction)displaySomeText:(id)sender;

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/tibmac


THE TARGET -ACTION MECHANISM 64

As far as the code compiler is concerned, IBAction is synonymous with

void. This keyword simply alerts Interface Builder that there’s an action

available in a class description.

It’s time to modify our code for this purpose. First, we need to change

the interface for our NotifyingClass object, so open NotifyingClass.h in X-

code. Change it so that the method follows our new action signature:

@interface NotifyingClass : NSObject {

}

- (IBAction)displaySomeText:(id)sender;

@end

Next, we need to change our implementation method signature in Noti-

fyingClass.m, so switch to this file, and make it look like this:

@implementation NotifyingClass

- (IBAction)displaySomeText:(id)sender

{

NSLog(@"displaySomeText just got called!");

}

@end

Notice that we don’t need to do anything with the sender attribute—we

can quite safely ignore it altogether. And, since IBAction is just a keyword

meaning void as far as the compiler is concerned, we don’t have to worry

about giving any information back at the end of the method.

Make sure you save all your modifications before proceeding. If you

hold down the E key on your keyboard and go to Xcode’s File menu,

you’ll see that a few of the items have changed, and there is now a

Save All... command (with keyboard shortcut E-D- S .) If there are any

unsaved changes in any of the project’s files, use this command to save

them all at once.

Connecting the Action in Interface Builder

Now that we’ve defined our NotifyingClass class instances to respond to

an action message for displaySomeText, we’ll use Interface Builder to con-

nect things visually.

Let’s start by adding a button to our existing TextApp window. Open

MainMenu.xib, and make sure TextApp’s Window object with the text

view is visible.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/tibmac


THE TARGET -ACTION MECHANISM 65

Figure 4.2: The new push button in our Text App main window

You will need to make that text view a little smaller by dragging up

the bottom handle so there’s room for a button underneath it. Next,

find a standard Push Button object in the Library palette, and drag one

out onto the window. You should end up with something resembling

Figure 4.2.

Next, remove one of the existing NotifyingClass instances from the Main-

Menu.xib file by selecting it and pressing the J key.

We’re now ready to connect our button to the remaining NotifyingClass

instance, and Interface Builder provides a great interface for doing

this. Bring the MainMenu.xib document window to the front in Interface

Builder, but keep the window with the button in it visible on screen.

Right-click (or C-click) the Notifying Class blue cube. You’ll find that a

black mini-window pops up (known as a heads-up display, or HUD), as

shown in Figure 4.3, on the following page.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/tibmac


SENDING MESSAGES FROM OUR CODE 66

Figure 4.3: The connections HUD for our NotifyingClass instance

If everything has gone to plan, you should find that this HUD win-

dow shows one option under the heading “Received Actions”—our dis-

playSomeText: action message. To the right of this line is a little circle;

click and drag from the circle, and you’ll find a line extends out and fol-

lows your movements on screen. Drag down to our new Button object,

and you’ll find IB highlights and identifies the button. Release your

mouse, and you should find that the HUD display now shows a con-

nection to our Push Button, as in Figure 4.4, on the next page.

If you now bring the application’s window to the front, click the push

button to select it, and then right-click (or C-click) on it, you’ll find

that another HUD window will appear, showing a connection to our

NotifyingClass object’s action under the “Sent Actions” heading, as in

Figure 4.5, on page 68.

It really is as simple as that! Interface Builder has now set up our but-

ton with a reference to the notifying object and has set up the requested

action for us, all with just a simple click-and-drag motion.

Save your file in Interface Builder, and switch back to Xcode to Build

& Run. TextApp will launch, and when you click the button in the

window, you’ll see a message appear each time in the Xcode console

window. Woo-hoo!

4.3 Sending Messages from Our Code

The target-action mechanism we explored in the previous section is

awesome for connecting up buttons and receiving messages in certain

situations, but we need to send messages to objects from our code too.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/tibmac


The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers

will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Beginning Mac Programming’s Home Page

http://pragprog.com/titles/tibmac

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com/titles/tibmac.

Contact Us
Online Orders: www.pragprog.com/catalog

Customer Service: support@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

Contact us: 1-800-699-PROG (+1 919 847 3884)

http://pragprog.com/titles/tibmac
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/tibmac
www.pragprog.com/catalog



