
Extracted from:

Distributed Services with Go
Your Guide to Reliable, Scalable, and Maintainable Systems

This PDF file contains pages extracted from Distributed Services with Go, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2021 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Distributed Services with Go
Your Guide to Reliable, Scalable, and Maintainable Systems

Travis Jeffery

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

For our complete catalog of hands-on, practical, and Pragmatic content for software devel-
opers, please visit https://pragprog.com.

The team that produced this book includes:

CEO: Dave Rankin
COO: Janet Furlow
Managing Editor: Tammy Coron
Development Editor: Dawn Schanafelt and Katharine Dvorak
Copy Editor: L. Sakhi MacMillan
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics
Founders: Andy Hunt and Dave Thomas

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2021 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-760-7
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—March 2021

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Why Use Service Discovery?
Service discovery is the process of figuring out how to connect to a service.
A service discovery solution must keep an up-to-date list (also known as a
registry) of services, their locations, and their health. Downstream services
then query this registry to discover the location of upstream services and
connect to them—for example, a web service discovering and connecting to
its database. This way, even if the upstream services change (scale up or
down, or get replaced), downstream services can still connect to them.

In the pre-cloud days, you could set up “service discovery” with manually
managed and configured static addresses, which was workable since applica-
tions ran on static hardware. Today, service discovery plays a big part in
modern cloud applications where nodes change frequently.

Instead of using service discovery, some developers put load balancers in
front of their services so that the load balancers provide static IPs. But for
server-to-server communication, where you control the servers and you don’t
need a load balancer to act as a trust boundary1 between clients and servers,
use service discovery instead. Load balancers add cost, increase latency,
introduce single points of failure, and need updates as services scale up and
down. If you manage tens or hundreds of microservices, then not using service
discovery means you also have to manage tens or hundreds of load balancers
and DNS records. For a distributed service like ours, using a load balancer
would force us to depend on a load-balancer service like nginx or the various
cloud load balancers like AWS’s ELB or Google Cloud’s Load Balancer. This
would increase our operational burden, infrastructure costs, and latency.

In our system, we have two service-discovery problems to solve:

• How will the servers in our cluster discover each other?
• How will the clients discover the servers?

In this chapter, we’ll work on implementing the discovery for the servers.
Then, after we implement consensus in Chapter 8, Coordinate Your Services
with Consensus, on page ?, we’ll work on the clients’ discovery in Chapter
9, Discover Servers and Load Balance from the Client, on page ?.

Now that you know what service discovery can do, we’re ready to embed it
into our service.

1. https://en.wikipedia.org/wiki/Trust_boundary

• Click HERE to purchase this book now. discuss

https://en.wikipedia.org/wiki/Trust_boundary
http://pragprog.com/titles/tjgo
http://forums.pragprog.com/forums/tjgo

Embed Service Discovery
When you have an application that needs to talk to a service, the tool you
use for service discovery needs to perform the following tasks:

• Manage a registry of services containing info such as their IPs and ports;
• Help services find other services using the registry;
• Health check service instances and remove them if they’re not well; and
• Deregister services when they go offline.

Historically, people who’ve built distributed services have depended on sepa-
rate, stand-alone services for service discovery (such as Consul, ZooKeeper,
and Etcd). In this architecture, users of your service run two clusters: one
for your service and one for your service discovery. The benefit of using a
service-discovery service is that you don’t have to build service discovery
yourself. The downside to using such a service, from your users’ standpoint,
is that they have to learn, launch, and operate an extra service’s cluster. So
using a stand-alone service for discovery removes the burden from your
shoulders and puts it on your users’. That means many users won’t use your
service because the burden is too much for them, and users who do take it
on won’t recommend your service to others as often or as highly.

So why did people who built distributed services use stand-alone service-
discovery services, and why did their users put up with the extra burden?
Because neither had much of a choice. The people building distributed services
didn’t have the libraries they needed to embed service discovery into their
services, and users didn’t have other options.

Fortunately, times have changed. Today, Gophers have Serf—a library that
provides decentralized cluster membership, failure detection, and orchestration
that you can use to easily embed service discovery into your distributed ser-
vices. Hashicorp, the company that created it, uses Serf to power its own
service-discovery product, Consul, so you’re in good company.

Using Serf to embed service discovery into your services means that you don’t
have to implement service discovery yourself and your users don’t have to
run an extra cluster. It’s a win-win.

When to Depend on a Stand-Alone Service-Discovery Solution

You may encounter cases where depending on a stand-alone ser-
vice for service discovery makes sense—for example, if you need
to integrate your service discovery with many platforms. You sink
a lot of effort into that kind of work, and that’s likely a poor use

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/tjgo
http://forums.pragprog.com/forums/tjgo

When to Depend on a Stand-Alone Service-Discovery Solution

of your time when you could just use a service like Consul that
provides those integrations. In any case, Serf is always a good
place to start. Once you’ve developed your service to solve the core
problem it’s targeting and your service is stable or close to it, then
you will have a good sense of whether you need to depend on a
service-discovery service.

Here are some other benefits of building our service with Serf:

• In the early days of building a service, Serf is faster to set up and build
our service against than having to set up a separate service.

• It’s easier to move from Serf to a stand-alone service than to move from
a stand-alone service to Serf, so we still have both options open.

• Our service will be easier and more flexible to deploy, making our service
more accessible.

So for our service, we’ll use Serf to build service discovery.

Now that we’ve seen the benefits of using Serf, let’s quickly discuss how Serf
does its thing.

• Click HERE to purchase this book now. discuss

Embed Service Discovery • 7

http://pragprog.com/titles/tjgo
http://forums.pragprog.com/forums/tjgo

