
Extracted from:

Distributed Services with Go
Your Guide to Reliable, Scalable, and Maintainable Systems

This PDF file contains pages extracted from Distributed Services with Go, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2021 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com






Distributed Services with Go
Your Guide to Reliable, Scalable, and Maintainable Systems

Travis Jeffery

The Pragmatic Bookshelf
Raleigh, North Carolina



Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

For our complete catalog of hands-on, practical, and Pragmatic content for software devel-
opers, please visit https://pragprog.com.

The team that produced this book includes:

CEO: Dave Rankin
COO: Janet Furlow
Managing Editor: Tammy Coron
Development Editor: Dawn Schanafelt and Katharine Dvorak
Copy Editor: L. Sakhi MacMillan
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics
Founders: Andy Hunt and Dave Thomas

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2021 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-760-7
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—March 2021

https://pragprog.com
support@pragprog.com
rights@pragprog.com


CHAPTER 4

Serve Requests with gRPC
We’ve set up our project and protocol buffers and written our log library.
Currently, our library can only be used on a single computer by a single
person at a time. Plus that person has to learn our library’s API, run our code,
and store the log on their disk—none of which most people will do, which
limits our user base. We can solve these problems and appeal to a larger
audience by turning our library into a web service. Compared to a program
that runs on a single computer, networked services provide three major
advantages:

• You can run them across multiple computers for availability and scalability.
• They allow multiple people to interact with the same data.
• They provide accessible interfaces that are easy for people to use.

Some situations where you’ll want to write services to reap these advantages
include providing a public API for your front end to hit, building internal
infrastructure tools, and making a service to build your own business on
(people rarely pay to use libraries).

In this chapter, we’ll build on our library and make a service that allows multiple
people to interact with the same data and runs across multiple computers. We
won’t add support for clusters right now; we’ll do that in Chapter 8, Coordinate
Your Services with Consensus, on page ?. The best tool I’ve found for serving
requests across distributed services is Google’s gRPC.

What Is gRPC?
When I was building distributed services in the past, the two common prob-
lems that drove me batty were maintaining compatibility and maintaining
performance between clients and the server.

• Click  HERE  to purchase this book now.  discuss

http://pragprog.com/titles/tjgo
http://forums.pragprog.com/forums/tjgo


I wanted to ensure that clients and the server were always compatible—that
the client was sending requests that the server understood, and vice versa
with the server’s responses. When I made breaking changes to the server, I
wanted to ensure that old clients continued to work, and I accomplished this
by versioning my API.

For maintaining good performance, your main priorities are optimizing your
database queries and optimizing the algorithms you’ve used to implement
your business logic. Once you’ve optimized those though, performance will
often come down to how fast your service unmarshals requests and marshals
responses, and down to reducing the overhead each time clients and the
server communicate—like using a single, long-lasting connection rather than
a new connection for each request.

So I was happy when Google released gRPC, an open source, high-performance
RPC (remote procedure call) framework. gRPC has been a great help in solving
these problems when building distributed systems, and I think you’ll find
that it simplifies your work. How does gRPC help you build services?

Goals When Building a Service
Here are the most important goals to aim for when you’re building a networked
service—and some info about how gRPC helps you achieve them:

Simplicity
Networked communication is technical and complex. When building our
service, we want to focus on the problem it solves rather than the technical
minutiae of request-response serialization, and so on. You want to work
with APIs that abstract these details away. However, when you need to
work at lower levels of abstraction, then you need those levels to be
accessible.

On the spectrum of low- to high-level frameworks, in terms of the abstrac-
tions you’re working with, gRPC is mid-to-high level. It’s above a framework
like Express since gRPC decides how to serialize and structure your end-
points and provides features like bidirectional streaming, but below a
framework like Rails since Rails handles everything from handling requests
to storing your data and structuring your application. gRPC is extendable
via middleware, and its active community1 has written middleware2 to

1. https://github.com/grpc-ecosystem
2. https://github.com/grpc-ecosystem/go-grpc-middleware

• 6

• Click  HERE  to purchase this book now.  discuss

https://github.com/grpc-ecosystem
https://github.com/grpc-ecosystem/go-grpc-middleware
http://pragprog.com/titles/tjgo
http://forums.pragprog.com/forums/tjgo


solve a lot of the problems you’ll face when building services—for example,
logging, authentication, rate limiting, and tracing.

Maintainability
Writing the first version of a service is a brief period of the total time you’ll
spend working on the service. Once your service is live and people depend
on it, you must maintain backward compatibility. With request-response
type APIs, the simplest way to maintain backward compatibility is to
version and run multiple instances of your API.

With gRPC, you can easily write and run separate versions of your services
when you have major API changes, while still taking advantage of proto-
buf’s field versioning for small changes. Having all your requests and
responses type checked helps prevent accidentally introducing back-
ward-incompatible changes as you and your peers build your service.

Security
When you expose a service on a network, you expose the service to who-
ever is on that network—potentially the whole Internet. It’s important
that you control who has access to your service and what they can do.

gRPC supports Secure Sockets Layer/Transport Layer Security (SSL/TLS) to
encrypt all data exchanged between the client and server and lets you attach
credentials to requests so you know which user is making each request. We’ll
discuss security in the next chapter.

Ease of use
The whole point of writing a service is to have people use it and solve
some problem of theirs. The easier your service is to use, the more popular
it will be. You go a long way toward making your service easy to use by
telling your users when they’re doing something wrong, such as calling
your API with a bad request.

With gRPC, everything from your service methods to your requests and
responses and their bodies are all defined in types. The compiler copies the
comments from your protobuf to your code to help users when the type defi-
nitions aren’t good enough. Your users will know whether they’re using the
API correctly thanks to their code being type checked. Having every-
thing—requests, responses, models, and serialization—type checked is a big
help to people learning how to use your service. gRPC also lets users look up
the API’s details with godoc. Many frameworks don’t offer either of these handy
features.

• Click  HERE  to purchase this book now.  discuss

Goals When Building a Service • 7

http://pragprog.com/titles/tjgo
http://forums.pragprog.com/forums/tjgo


Performance
You want your service to be as fast as possible while using as few
resources as possible. For example, if you can run your application on
an n1-standard-1 (~$35 per month) instance on Google Cloud Platform
rather than on an n1-standard-2 (~$71 per month) instance, that cuts
your costs in half.

gRPC is built on solid foundations with protobuf and HTTP/2 because protobuf
performs very well at serialization and HTTP/2 provides a means for long-
lasting connections, which gRPC takes advantage of. So your service runs
efficiently and doesn’t cause unnecessarily high server bills.

Scalability
Scalability can refer to scaling up with load balancing to balance the load
across multiple computers and to scaling up the number of people
developing a project. gRPC helps make both types of scaling easier.

You can use different kinds of load balancing with gRPC3 based on your needs,
including thick client-side load balancing, proxy load balancing, look-aside
load balancing, or service mesh.

For scaling up the number of people working on your project, gRPC lets you
compile your service into clients and servers in the languages that gRPC
supports. This allows people to use their own languages to build services that
communicate with each other.

We now know what we want out of building our service, so let’s create a gRPC
service that fulfills our goals.

Define a gRPC Service
A gRPC service is essentially a group of related RPC endpoints—exactly how
they’re related is up to you. A common example is a RESTful grouping where
the relation is that the endpoints operate on the same resource, but the
grouping could be looser than that. In general, it’s just a group of endpoints
needed to solve some problem. In our case, the goal is to enable people to
write to and read from their log.

Creating a gRPC service involves defining it in protobuf and then compiling your
protocol buffers into code comprising the client and server stubs that you then
implement. To get started, open log.proto, the file where we defined our Record
message, and add the following service definition above those messages:

3. https://grpc.io/blog/grpc-load-balancing

• 8

• Click  HERE  to purchase this book now.  discuss

https://grpc.io/blog/grpc-load-balancing
http://pragprog.com/titles/tjgo
http://forums.pragprog.com/forums/tjgo


ServeRequestsWithgRPC/api/v1/log.proto
service Log {

rpc Produce(ProduceRequest) returns (ProduceResponse) {}
rpc Consume(ConsumeRequest) returns (ConsumeResponse) {}
rpc ConsumeStream(ConsumeRequest) returns (stream ConsumeResponse) {}
rpc ProduceStream(stream ProduceRequest) returns (stream ProduceResponse) {}

}

The service keyword says that this is a service for the compiler to generate,
and each RPC line is an endpoint in that service, specifying the type of request
and response the endpoint accepts. The requests and responses are messages
that the compiler turns into Go structs, like the ones we saw in the previous
chapter.

We have two streaming endpoints:

• ConsumeStream—a server-side streaming RPC where the client sends a
request to the server and gets back a stream to read a sequence of messages.

• ProduceStream—a bidirectional streaming RPC where both the client and
server send a sequence of messages using a read-write stream. The two
streams operate independently, so the clients and servers can read and
write in whatever order they like. For example, the server could wait to
receive all of the client’s requests before sending back its response. You’d
order your calls this way if your server needed to process the requests in
batches or aggregate a response over multiple requests. Alternatively, the
server could send back a response for each request in lockstep. You’d
order your calls this way if each request required its own corresponding
response.

Below your service definition, add the following code to define our requests
and responses:

ServeRequestsWithgRPC/api/v1/log.proto
message ProduceRequest {

Record record = 1;
}

message ProduceResponse {
uint64 offset = 1;

}

message ConsumeRequest {
uint64 offset = 1;

}

message ConsumeResponse {
Record record = 2;

}

• Click  HERE  to purchase this book now.  discuss

Define a gRPC Service • 9

http://media.pragprog.com/titles/tjgo/code/ServeRequestsWithgRPC/api/v1/log.proto
http://media.pragprog.com/titles/tjgo/code/ServeRequestsWithgRPC/api/v1/log.proto
http://pragprog.com/titles/tjgo
http://forums.pragprog.com/forums/tjgo


The request includes the record to produce to the log, and the response sends
back the record’s offset, which is essentially the record’s identifier. Similarly
with consuming: the user specifies the offset of the logs they want to consume,
and the server responds back with the specified record.

To generate the client- and server-side code with our Log service definition,
we need to tell the protobuf compiler to use the gRPC plugin.

• 10

• Click  HERE  to purchase this book now.  discuss

http://pragprog.com/titles/tjgo
http://forums.pragprog.com/forums/tjgo

