
Extracted from:

The Definitive ANTLR Reference
Building Domain-Specific Languages

This PDF file contains pages extracted from The Definitive ANTLR Reference, published

by the Pragmatic Bookshelf. For more information or to purchase a paperback or PDF

copy, please visit http://www.pragmaticprogrammer.com.

Note: This extract contains some colored text (particularly in code listing). This is

available only in online versions of the books. The printed versions are black and white.

Pagination might vary between the online and printer versions; the content is otherwise

identical.

Copyright © 2007The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any

means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragmaticprogrammer.com

Chapter 1

Getting Started with ANTLR
This is a reference guide for ANTLR: a sophisticated parser generator

you can use to implement language interpreters, compilers, and other

translators. This is not a compiler book, and it is not a language theory

textbook. Although you can find many good books about compilers and

their theoretical foundations, the vast majority of language applications

are not compilers. This book is more directly useful and practical for

building common, everyday language applications. It is densely packed

with examples, explanations, and reference material focused on a single

language tool and methodology.

Programmers most often use ANTLR to build translators and inter-

preters for domain-specific languages (DSLs). DSLs are generally very

high-level languages tailored to specific tasks. They are designed to

make their users particularly effective in a specific domain. DSLs in-

clude a wide range of applications, many of which you might not con-

sider languages. DSLs include data formats, configuration file formats,

network protocols, text-processing languages, protein patterns, gene

sequences, space probe control languages, and domain-specific pro-

gramming languages.

DSLs are particularly important to software development because they

represent a more natural, high-fidelity, robust, and maintainable

means of encoding a problem than simply writing software in a general-

purpose language. For example, NASA uses domain-specific command

languages for space missions to improve reliability, reduce risk, reduce

cost, and increase the speed of development. Even the first Apollo guid-

ance control computer from the 1960s used a DSL that supported vec-

tor computations.1

1. See http://www.ibiblio.org/apollo/assembly_language_manual.html.

http://www.ibiblio.org/apollo/assembly_language_manual.html

THE BIG PICTURE 24

This chapter introduces the main ANTLR components and explains how

they all fit together. You’ll see how the overall DSL translation problem

easily factors into multiple, smaller problems. These smaller problems

map to well-defined translation phases (lexing, parsing, and tree pars-

ing) that communicate using well-defined data types and structures

(characters, tokens, trees, and ancillary structures such as symbol

tables). After this chapter, you’ll be broadly familiar with all transla-

tor components and will be ready to tackle the detailed discussions in

subsequent chapters. Let’s start with the big picture.

1.1 The Big Picture

A translator maps each input sentence of a language to an output sen-

tence. To perform the mapping, the translator executes some code you

provide that operates on the input symbols and emits some output. A

translator must perform different actions for different sentences, which

means it must be able to recognize the various sentences.

Recognition is much easier if you break it into two similar but dis-

tinct tasks or phases. The separate phases mirror how your brain reads

English text. You don’t read a sentence character by character. Instead,

you perceive a sentence as a stream of words. The human brain sub-

consciously groups character sequences into words and looks them

up in a dictionary before recognizing grammatical structure. The first

translation phase is called lexical analysis and operates on the incom-

ing character stream. The second phase is called parsing and oper-

ates on a stream of vocabulary symbols, called tokens, emanating from

the lexical analyzer. ANTLR automatically generates the lexical analyzer

and parser for you by analyzing the grammar you provide.

Performing a translation often means just embedding actions (code)

within the grammar. ANTLR executes an action according to its posi-

tion within the grammar. In this way, you can execute different code for

different phrases (sentence fragments). For example, an action within,

say, an expression rule is executed only when the parser is recognizing

an expression.

Some translations should be broken down into even more phases. Often

the translation requires multiple passes, and in other cases, the trans-

lation is just a heck of a lot easier to code in multiple phases. Rather

than reparse the input characters for each phase, it is more convenient

to construct an intermediate form to pass between phases.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/tpantlr

THE BIG PICTURE 25

Language Translation Can Help You Avoid Work

In 1988, I worked in Paris for a robotics company. At the time,
the company had a fairly demanding coding standard that
required very formal and structured comments on each C func-
tion and file.

After finishing my compiler project, I was ready to head back
to the United States and continue with my graduate studies.
Unfortunately, the company was withholding my bonus until I
followed its coding standard. The standard required all sorts
of tedious information such as which functions were called in
each function, the list of parameters, list of local variables,
which functions existed in this file, and so on. As the company
dangled the bonus check in front me, I blurted out, “All of that
can be automatically generated!” Something clicked in my
mind. Of course. Build a quick C parser that is capable of read-
ing all my source code and generating the appropriate com-
ments. I would have to go back and enter the written descrip-
tions, but my translator would do the rest.

I built a parser by hand (this was right before I started working
on ANTLR) and created template files for the various documen-
tation standards. There were holes that my parser could fill in
with parameters, variable lists, and so on. It took me two days
to build the translator. I started it up, went to lunch, and came
back to commented source code. I quickly entered the neces-
sary descriptions, collected my bonus, and flew back to Purdue
University with a smirk on my face.

The point is that knowing about computer languages and lan-
guage technology such as ANTLR will make your coding life
much easier. Don’t be afraid to build a human-readable con-
figuration file (I implore everyone to please stop using XML as
a human interface!) or to build domain-specific languages to
make yourself more efficient. Designing new languages and
building translators for existing languages, when appropriate,
is the hallmark of a sophisticated developer.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/tpantlr

THE BIG PICTURE 26

lexer parsercharacters
tokens

output

AST

tree
walker

ancillary data
structures: symbol
table, flow graph, ...

Figure 1.1: Overall translation data flow; edges represent data structure

flow, and squares represent translation phases

This intermediate form is usually a tree data structure, called an ab-

stract syntax tree (AST), and is a highly processed, condensed version

of the input. Each phase collects more information or performs more

computations. A final phase, called the emitter, ultimately emits output

using all the data structures and computations from previous phases.

Figure 1.1 illustrates the basic data flow of a translator that accepts

characters and emits output. The lexical analyzer, or lexer, breaks up

the input stream into tokens. The parser feeds off this token stream

and tries to recognize the sentence structure. The simplest translators

execute actions that immediately emit output, bypassing any further

phases.

Another kind of simple translator just constructs an internal data

structure—it doesn’t actually emit output. A configuration file reader is

the best example of this kind of translator. More complicated transla-

tors use the parser only to construct ASTs. Multiple tree parsers (depth-

first tree walkers) then scramble over the ASTs, computing other data

structures and information needed by future phases. Although it is not

shown in this figure, the final emitter phase can use templates to gen-

erate structured text output.

A template is just a text document with holes in it that an emitter can

fill with values. These holes can also be expressions that operate on the

incoming data values. ANTLR formally integrates the StringTemplate

engine to make it easier for you to build emitters (see Chapter 9, Gen-

erating Structured Text with Templates and Grammars, on page 208).

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/tpantlr

THE BIG PICTURE 27

StringTemplate is a domain-specific language for generating structured

text from internal data structures that has the flavor of an output gram-

mar. Features include template group inheritance, template polymor-

phism, lazy evaluation, recursion, output autoindentation, and the new

notions of group interfaces and template regions.2 StringTemplate’s fea-

ture set is driven by solving real problems encountered in complicated

systems. Indeed, ANTLR makes heavy use of StringTemplate to trans-

late grammars to executable recognizers. Each ANTLR language target

is purely a set of templates and fed by ANTLR’s internal retargetable

code generator.

Now, let’s take a closer look at the data objects passed between the

various phases in Figure 1.1, on the previous page. Figure 1.2, on the

following page, illustrates the relationship between characters, tokens,

and ASTs. Lexers feed off characters provided by a CharStream such as

ANTLRStringStream or ANTLRFileStream. These predefined streams assume

that the entire input will fit into memory and, consequently, buffer up

all characters. Rather than creating a separate string object per token,

tokens can more efficiently track indexes into the character buffer.

Similarly, rather than copying data from tokens into tree nodes, ANTLR

AST nodes can simply point at the token from which they were created.

CommonTree, for example, is a predefined node containing a Token pay-

load. The type of an ANTLR AST node is treated as an Object so that

there are no restrictions whatsoever on your tree data types. In fact, you

can even make your Token objects double as AST nodes to avoid extra

object instantiations. The relationship between the data types described

in Figure 1.2, on the next page, is very efficient and flexible.

The tokens in the figure with checkboxes reside on a hidden channel

that the parser does not see. The parser tunes to a single channel and,

hence, ignores tokens on any other channel. With a simple action in the

lexer, you can send different tokens to the parser on different channels.

For example, you might want whitespace and regular comments on one

channel and Javadoc comments on another when parsing Java. The

token buffer preserves the relative token order regardless of the token

channel numbers. The token channel mechanism is an elegant solution

to the problem of ignoring but not throwing away whitespace and com-

ments (some translators need to preserve formatting and comments).

2. Please see http://www.stringtemplate.org for more details. I mention these terms to entice

readers to learn more about StringTemplate.

CLICK HERE to purchase this book now.

http://www.stringtemplate.org
http://www.pragmaticprogrammer.com/titles/tpantlr

AN A-MAZING ANALOGY 28

w i d t h = 2 0 0 ; \n

=WSID WS INT WS;

=

ID INT

characters
(CharStream)

tokens
(Token)

AST
(CommonTree)

x x x
......

Figure 1.2: Relationship between characters, tokens, and ASTs;

CharStream, Token, and CommonTree are ANTLR runtime types

As you work through the examples and discussions later in this book,

it may help to keep in mind the analogy described in the next section.

1.2 An A-mazing Analogy

This book focuses primarily on two topics: the discovery of the implicit

tree structure behind input sentences and the generation of structured

text. At first glance, some of the language terminology and technol-

ogy in this book will be unfamiliar. Don’t worry. I’ll define and explain

everything, but it helps to keep in mind a simple analogy as you read.

Imagine a maze with a single entrance and single exit that has words

written on the floor. Every path from entrance to exit generates a sen-

tence by “saying” the words in sequence. In a sense, the maze is analo-

gous to a grammar that defines a language.

You can also think of a maze as a sentence recognizer. Given a sentence,

you can match its words in sequence with the words along the floor. Any

sentence that successfully guides you to the exit is a valid sentence (a

passphrase) in the language defined by the maze.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/tpantlr

INSTALLING ANTLR 29

Language recognizers must discover a sentence’s implicit tree struc-

ture piecemeal, one word at a time. At almost every word, the recog-

nizer must make a decision about the interpretation of a phrase or

subphrase. Sometimes these decisions are very complicated. For exam-

ple, some decisions require information about previous decision choices

or even future choices. Most of the time, however, decisions need just

a little bit of lookahead information. Lookahead information is analo-

gous to the first word or words down each path that you can see from a

given fork in the maze. At a fork, the next words in your input sentence

will tell you which path to take because the words along each path are

different. Chapter 2, The Nature of Computer Languages, on page 36

describes the nature of computer languages in more detail using this

analogy. You can either read that chapter first or move immediately to

the quick ANTLR tour in Chapter 3, A Quick Tour for the Impatient, on

page 61.

In the next two sections, you’ll see how to map the big picture diagram

in Figure 1.1, on page 26, into Java code and also learn how to execute

ANTLR.

1.3 Installing ANTLR

ANTLR is written in Java, so you must have Java installed on your

machine even if you are going to use ANTLR with, say, Python. ANTLR

requires a Java version of 1.4 or higher. Before you can run ANTLR on

your grammar, you must install ANTLR by downloading it3 and extract-

ing it into an appropriate directory. You do not need to run a configu-

ration script or alter an ANTLR configuration file to properly install

ANTLR. If you want to install ANTLR in /usr/local/antlr-3.0, do the follow-

ing:

$ cd /usr/local

$ tar xvfz antlr-3.0.tar.gz

antlr-3.0/

antlr-3.0/build/

antlr-3.0/build.properties

antlr-3.0/build.xml

antlr-3.0/lib/

antlr-3.0/lib/antlr-3.0.jar

...

$

3. See http://www.antlr.org/download.html.

CLICK HERE to purchase this book now.

http://www.antlr.org/download.html
http://www.pragmaticprogrammer.com/titles/tpantlr

Pragmatic Projects
Your application is feature complete, but is it ready for the real world? See how to design

and deploy production-ready software and Release It!.

Have you ever noticed that project retrospectives feel too little, too late? What you need

to do is start having Agile Retrospectives.

Release It!
Whether it’s in Java, .NET, or Ruby on Rails,

getting your application ready to ship is only half

the battle. Did you design your system to survive a

sudden rush of visitors from Digg or Slashdot? Or

an influx of real world customers from 100 different

countries? Are you ready for a world filled with

flakey networks, tangled databases, and impatient

users?

If you’re a developer and don’t want to be on call at

3AM for the rest of your life, this book will help.

Design and Deploy Production-Ready Software

Michael T. Nygard

(368 pages) ISBN: 0-9787392-1-3. $34.95

http://pragmaticprogrammer.com/titles/mnee

Agile Retrospectives
Mine the experience of your software development

team continually throughout the life of the project.

Rather than waiting until the end of the project—as

with a traditional retrospective, when it’s too late to

help—agile retrospectives help you adjust to

change today.

The tools and recipes in this book will help you

uncover and solve hidden (and not-so-hidden)

problems with your technology, your methodology,

and those difficult “people issues” on your team.

Agile Retrospectives: Making Good Teams Great

Esther Derby and Diana Larsen

(170 pages) ISBN: 0-9776166-4-9. $29.95

http://pragmaticprogrammer.com/titles/dlret

http://pragmaticprogrammer.com/titles/mnee
http://pragmaticprogrammer.com/titles/dlret

Rails and More
If you know Java, and are curious about Ruby on Rails, you don’t have to start from

scratch. Read Rails for Java Developers and get a head start on this exciting new tech-

nology.

And whatever language you use, you’ll need a good text editor, too. On the Mac, we

recommend TextMate.

Rails for Java Developers
Enterprise Java developers already have most of

the skills needed to create Rails applications. They

just need a guide which shows how their Java

knowledge maps to the Rails world. That’s what

this book does. It covers: • The Ruby language

• Building MVC Applications • Unit and

Functional Testing • Security • Project

Automation • Configuration • Web Services

This book is the fast track for Java programmers

who are learning or evaluating Ruby on Rails.

Rails for Java Developers

Stuart Halloway and Justin Gehtland

(300 pages) ISBN: 0-9776166-9-X. $34.95

http://pragmaticprogrammer.com/titles/fr_r4j

TextMate
If you’re coding Ruby or Rails on a Mac, then you

owe it to yourself to get the TextMate editor. And,

once you’re using TextMate, you owe it to yourself

to pick up this book. It’s packed with information

which will help you automate all your editing tasks,

saving you time to concentrate on the important

stuff. Use snippets to insert boilerplate code and

refactorings to move stuff around. Learn how to

write your own extensions to customize it to the

way you work.

TextMate: Power Editing for the Mac

James Edward Gray II

(200 pages) ISBN: 0-9787392-3-X. $29.95

http://pragmaticprogrammer.com/titles/textmate

http://pragmaticprogrammer.com/titles/fr_r4j
http://pragmaticprogrammer.com/titles/textmate

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style, and continue to garner awards

and rave reviews. As development gets more and more difficult, the Pragmatic Program-

mers will be there with more titles and products to help you stay on top of your game.

Visit Us Online
The Definitive ANTLR Reference

http://pragmaticprogrammer.com/titles/tpantlr

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragmaticprogrammer.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragmaticprogrammer.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragmaticprogrammer.com/news

Check out the latest pragmatic developments in the news.

Buy the Book
If you liked this PDF, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragmaticprogrammer.com/titles/tpantlr.

Contact Us
Phone Orders: 1-800-699-PROG (+1 919 847 3884)

Online Orders: www.pragmaticprogrammer.com/catalog

Customer Service: orders@pragmaticprogrammer.com

Non-English Versions: translations@pragmaticprogrammer.com

Pragmatic Teaching: academic@pragmaticprogrammer.com

Author Proposals: proposals@pragmaticprogrammer.com

http://pragmaticprogrammer.com/titles/tpantlr
http://pragmaticprogrammer.com/updates
http://pragmaticprogrammer.com/community
http://pragmaticprogrammer.com/news
pragmaticprogrammer.com/titles/tpantlr
www.pragmaticprogrammer.com/catalog

	Introducing ANTLR and Computer Language Translation
	Getting Started with ANTLR
	The Big Picture
	An A-mazing Analogy
	Installing ANTLR

