
Extracted from:

Language Implementation Patterns
Create Your Own Domain-Specific and

General Programming Languages

This PDF file contains pages extracted from Language Implementation Patterns,

published by the Pragmatic Bookshelf. For more information or to purchase a

paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This is

available only in online versions of the books. The printed versions are black and white.

Pagination might vary between the online and printer versions; the content is otherwise

identical.

Copyright © 2010 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any

means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragprog.com




Many of the designations used by manufacturers and sellers to distinguish their prod-

ucts are claimed as trademarks. Where those designations appear in this book, and The

Pragmatic Programmers, LLC was aware of a trademark claim, the designations have

been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The

Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

With permission of the creator we hereby publish the chess images in Chapter 11 under

the following licenses:

Permission is granted to copy, distribute and/or modify this document under the terms

of the GNU Free Documentation License, Version 1.2 or any later version published by

the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no

Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free

Documentation License"

(http://commons.wikimedia.org/wiki/Commons:GNU_Free_Documentation_License).

Every precaution was taken in the preparation of this book. However, the publisher

assumes no responsibility for errors or omissions, or for damages that may result from

the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team

create better software and have more fun. For more information, as well as the latest

Pragmatic titles, please visit us at

http://www.pragprog.com

Copyright © 2010 Terence Parr.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-

ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 1-934356-45-X

ISBN-13: 978-1-934356-45-6

Printed on acid-free paper.

P1.0 printing, December 2009

Version: 2010-1-13

http://www.pragprog.com


Preface
The more language applications you build, the more patterns you’ll

see. The truth is that the architecture of most language applications

is freakishly similar. A broken record plays in my head every time I

start a new language application: “First build a syntax recognizer that

creates a data structure in memory. Then sniff the data structure, col-

lecting information or altering the structure. Finally, build a report or

code generator that feeds off the data structure.” You even start see-

ing patterns within the tasks themselves. Tasks share lots of common

algorithms and data structures.

Once you get these language implementation design patterns and the

general architecture into your head, you can build pretty much what-

ever you want. If you need to learn how to build languages pronto, this

book is for you. It’s a pragmatic book that identifies and distills the

common design patterns to their essence. You’ll learn why you need

the patterns, how to implement them, and how they fit together. You’ll

be a competent language developer in no time!

Building a new language doesn’t require a great deal of theoretical com-

puter science. You might be skeptical because every book you’ve picked

up on language development has focused on compilers. Yes, build-

ing a compiler for a general-purpose programming language requires

a strong computer science background. But, most of us don’t build

compilers. So, this book focuses on the things that we build all the

time: configuration file readers, data readers, model-driven code gener-

ators, source-to-source translators, source analyzers, and interpreters.

We’ll also code in Java rather than a primarily academic language like

Scheme so that you can directly apply what you learn in this book to

real-world projects.



WHAT TO EXPECT FROM THIS BOOK 15

What to Expect from This Book

This book gives you just the tools you’ll need to develop day-to-day lan-

guage applications. You’ll be able to handle all but the really advanced

or esoteric situations. For example, we won’t have space to cover top-

ics such as machine code generation, register allocation, automatic

garbage collection, thread models, and extremely efficient interpreters.

You’ll get good all-around expertise implementing modest languages,

and you’ll get respectable expertise in processing or translating com-

plex languages.

This book explains how existing language applications work so you

can build your own. To do so, we’re going to break them down into

a series of well-understood and commonly used patterns. But, keep in

mind that this book is a learning tool, not a library of language imple-

mentations. You’ll see many sample implementations throughout the

book, though. Samples make the discussions more concrete and pro-

vide excellent foundations from which to build new applications.

It’s also important to point out that we’re going to focus on building

applications for languages that already exist (or languages you design

that are very close to existing languages). Language design, on the other

hand, focuses on coming up with a syntax (a set of valid sentences) and

describing the complete semantics (what every possible input means).

Although we won’t specifically study how to design languages, you’ll

actually absorb a lot as we go through the book. A good way to learn

about language design is to look at lots of different languages. It’ll help

if you research the history of programming languages to see how lan-

guages change over time.

When we talk about language applications, we’re not just talking about

implementing languages with a compiler or interpreter. We’re talking

about any program that processes, analyzes, or translates an input file.

Implementing a language means building an application that executes

or performs tasks according to sentences in that language. That’s just

one of the things we can do for a given language definition. For exam-

ple, from the definition of C, we can build a C compiler, a translator

from C to Java, or a tool that instruments C code to isolate memory

leaks. Similarly, think about all the tools built into the Eclipse develop-

ment environment for Java. Beyond the compiler, Eclipse can refactor,

reformat, search, syntax highlight, and so on.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/tpdsl


HOW THIS BOOK IS ORGANIZED 16

You can use the patterns in this book to build language applications

for any computer language, which of course includes domain-specific

languages (DSLs). A domain-specific language is just that: a computer

language designed to make users particularly productive in a specific

domain. Examples include Mathematica, shell scripts, wikis, UML,

XSLT, makefiles, PostScript, formal grammars, and even data file for-

mats like comma-separated values and XML. The opposite of a DSL is

a general-purpose programming language like C, Java, or Python. In

the common usage, DSLs also typically have the connotation of being

smaller because of their focus. This isn’t always the case, though. SQL,

for example, is a lot bigger than most general-purpose programming

languages.

How This Book Is Organized

This book is divided into four parts:

• Getting Started with Parsing: We’ll start out by looking at the over-

all architecture of language applications and then jump into the

key language recognition (parsing) patterns.

• Analyzing Languages: To analyze DSLs and programming langu-

ages, we’ll use parsers to build trees that represent language con-

structs in memory. By walking those trees, we can track and iden-

tify the various symbols (such as variables and functions) in the

input. We can also compute expression result-type information

(such as int and float). The patterns in this part of the book explain

how to check whether an input stream makes sense.

• Building Interpreters: This part has four different interpreter pat-

terns. The interpreters vary in terms of implementation difficulty

and run-time efficiency.

• Translating and Generating Languages: In the final part, we will

learn how to translate one language to another and how to gen-

erate text using the StringTemplate template engine. In the final

chapter, we’ll lay out the architecture of some interesting language

applications to get you started building languages on your own.

The chapters within the different parts proceed in the order you’d follow

to implement a language. Section 1.2, A Tour of the Patterns, on page 24

describes how all the patterns fit together.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/tpdsl


WHAT YOU’LL FIND IN THE PATTERNS 17

What You’ll Find in the Patterns

There are 31 patterns in this book. Each one describes a common data

structure, algorithm, or strategy you’re likely to find in language appli-

cations. Each pattern has four parts:

• Purpose: This section briefly describes what the pattern is for. For

example, the purpose of Pattern 21, Automatic Type Promotion,

on page 210 says “. . . how to automatically and safely promote

arithmetic operand types.” It’s a good idea to scan the Purpose

section before jumping into a pattern to discover exactly what it’s

trying to solve.

• Discussion: This section describes the problem in more detail,

explains when to use the pattern, and describes how the pattern

works.

• Implementation: Each pattern has a sample implementation in

Java (possibly using language tools such as ANTLR). The sam-

ple implementations are not intended to be libraries that you can

immediately apply to your problem. They demonstrate, in code,

what we talk about in the Discussion sections.

• Related Patterns. This section lists alternative patterns that solve

the same problem or patterns we depend on to implement this

pattern.

The chapter introductory materials and the patterns themselves often

provide comparisons between patterns to keep everything in proper

perspective.

Who Should Read This Book

If you’re a practicing software developer or computer science student

and you want to learn how to implement computer languages, this

book is for you. By computer language, I mean everything from data

formats, network protocols, configuration files, specialized math lan-

guages, and hardware description languages to general-purpose pro-

gramming

languages.

You don’t need a background in formal language theory, but the code

and discussions in this book assume a solid programming background.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/tpdsl


HOW TO READ THIS BOOK 18

To get the most out of this book, you should be fairly comfortable with

recursion. Many algorithms and processes are inherently recursive.

We’ll use recursion to do everything from recognizing input, walking

trees, and building interpreters to generating output.

How to Read This Book

If you’re new to language implementation, start with Chapter 1, Lan-

guage Applications Cracked Open, on page 22 because it provides an

architectural overview of how we build languages. You can then move

on to Chapter 2, Basic Parsing Patterns, on page 39 and Chapter 3,

Enhanced Parsing Patterns, on page 67 to get some background on

grammars (formal language descriptions) and language recognition.

If you’ve taken a fair number of computer science courses, you can

skip ahead to either Chapter 4, Building Intermediate Form Trees, on

page 90 or Chapter 5, Walking and Rewriting Trees, on page 118. Even

if you’ve built a lot of trees and tree walkers in your career, it’s still

worth looking at Pattern 14, Tree Grammar, on page 136 and Pattern

15, Tree Pattern Matcher, on page 140.

If you’ve done some basic language application work before, you already

know how to read input into a handy tree data structure and walk it.

You can skip ahead to Chapter 6, Tracking and Identifying Program

Symbols, on page 148 and Chapter 7, Managing Symbol Tables for Data

Aggregates, on page 172, which describe how to build symbol tables.

Symbol tables answer the question “What is x?” for some input symbol

x. They are necessary data structures for the patterns in Chapter 8,

Enforcing Static Typing Rules, on page 198, for example.

More advanced readers might want to jump directly to Chapter 9, Build-

ing High-Level Interpreters, on page 234 and Chapter 12, Generating

DSLs with Templates, on page 325. If you really know what you’re doing,

you can skip around the book looking for patterns of interest. The truly

impatient can grab a sample implementation from a pattern and use it

as a kernel for a new language (relying on the book for explanations).

If you bought the e-book version of this book, you can click the gray

boxes above the code samples to download code snippets directly. If

you’d like to participate in conversations with me and other readers,

you can do so at the web page for this book1 or on the ANTLR user’s

1. http://www.pragprog.com/titles/tpdsl

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/tpdsl
http://www.pragprog.com/titles/tpdsl


LANGUAGES AND TOOLS USED IN THIS BOOK 19

list.2 You can also post book errata and download all the source code

on the book’s web page.

Languages and Tools Used in This Book

The code snippets and implementations in this book are written inJava,

but their substance applies equally well to any other general program-

ming language. I had to pick a single programming language for con-

sistency. Java is a good choice because it’s widely used in industry.3,4

Remember, this book is about design patterns, not “language recipes.”

You can’t just download a pattern’s sample implementation and apply

it to your problem without modification.

We’ll use state-of-the-art language tools wherever possible in this book.

For example, to recognize (parse) input phrases, we’ll use aparser gen-

erator (well, that is, after we learn how to build parsers manually in

Chapter 2, Basic Parsing Patterns, on page 39). It’s no fair using a

parser generator until you know how parsers work. That’d be like using

a calculator before learning to do arithmetic. Similarly, once we know

how to build tree walkers by hand, we can let a tool build them for us.

In this book, we’ll use ANTLR extensively. ANTLR is a parser generator

and tree walker generator that I’ve honed over the past two decades

while building language applications. I could have used any similar

language tool, but I might as well use my own. My point is that this

book is not about ANTLR itself—it’s about the design patterns common

to most language applications. The code samples merely help you to

understand the patterns.

We’ll also use a template engine called StringTemplate a lot in Chap-

ter 12, Generating DSLs with Templates, on page 325 to generate out-

put. StringTemplate is like an “unparser generator,” and templates are

like output grammar rules. The alternative to a template engine would

be to use an unstructured blob of generation logic interspersed with

print statements.

You’ll be able to follow the patterns in this book even if you’re not famil-

iar with ANTLR and StringTemplate. Only the sample implementations

use them. To get the most out of the patterns, though, you should walk

2. http://www.antlr.org/support.html

3. http://langpop.com

4. http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

CLICK HERE to purchase this book now.

http://www.antlr.org/support.html
http://langpop.com
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.pragprog.com/titles/tpdsl


LANGUAGES AND TOOLS USED IN THIS BOOK 20

through the sample implementations. To really understand them, it’s

a good idea to learn more about the ANTLR project tools. You’ll get a

taste in Section 4.3, Quick Introduction to ANTLR, on page 101. You can

also visit the website to get documentation and examples or purchase

The Definitive ANTLR Reference [Par07] (shameless plug).

One way or another, you’re going to need language tools to implement

languages. You’ll have no problem transferring your knowledge to other

tools after you finish this book. It’s like learning to fly—you have no

choice but to pick a first airplane. Later, you can move easily to another

airplane. Gaining piloting skills is the key, not learning the details of a

particular aircraft cockpit.

I hope this book inspires you to learn about languages and motivates

you to build domain-specific languages (DSLs) and other language tools

to help fellow programmers.

Terence Parr

December 2009

parrt@cs.usfca.edu

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/tpdsl


The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers

will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Language Implementation Patterns’ Home Page

http://pragprog.com/titles/tpdsl

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com/titles/tpdsl.

Contact Us
Online Orders: www.pragprog.com/catalog

Customer Service: support@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

Contact us: 1-800-699-PROG (+1 919 847 3884)

http://pragprog.com/titles/tpdsl
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/tpdsl
www.pragprog.com/catalog



