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Chapter 8

Enforcing Static Typing Rules
We derive the meaning of a sentence from both its structure (syntax)

and the particular vocabulary symbols it uses. The structure says what

to do, and the symbols say what to do it to. For example, in phrase print

x, the syntax says to print a value, and the symbol x says which value to

print. Sometimes, though, we write code that make no sense even if the

syntax is correct. Such programs violate a language’s semantic rules.

Languages typically have lots and lots of semantic rules. Some rules are

run-time constraints (dynamic semantics), and some are compile-time

constraints (static semantics). Dynamic semantic rules enforce things

like “no division by zero” and “no array index out of bounds.” Depend-

ing on the language, we can enforce some rules statically such as “no

multiplication of incompatible types.”

Where to draw the line between static and dynamic rules is up to the

language designer. For example, Python is dynamically typed, which

means that programmers do not specify the types of program values

(nor can the compiler infer every type). The Python interpreter enforces

all the semantic rules at run-time. C++ is the opposite extreme. Any-

thing goes at run-time, but C++ is statically typed. We have to spec-

ify the types of all program values. Some languages enforce the same

rule statically and then again dynamically to guard against hostile pro-

grams. For example, Java does type checking at compile-time as well as

at run-time. Both statically and dynamically typed languages are called

type safe if they disallow operations on incompatible types.

Because statically typed languages are so common, we are going to

devote an entire chapter to enforcing static type safety (those readers

interested only in implementing dynamically typed languages such as
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Python and Ruby can skip this chapter). Here are the patterns we’ll

discuss:

• Pattern 20, Computing Static Expression Types, on page 201. To

guarantee type safety, the first thing we’ve got to do is compute

the types of all expressions and expression elements. We assume

that the operands of a binary arithmetic operation have the same

type. There is no automatic promotion of arithmetic values. Most

languages do automatically promote arithmetic values, but tech-

nically type computation and promotion are two different opera-

tions. That’s why we’ll look at them separately in this pattern and

the next.

• Pattern 21, Automatic Type Promotion, on page 210. This pat-

tern demonstrates how to promote operands to have the same or

otherwise compatible types. For example, in the expression 3+4.5,

we expect the language to automatically promote integer 3 to a

floating-point value.

• Pattern 22, Enforcing Static Type Safety, on page 218. Once we

know the types of all expressions, we can enforce type safety. This

amounts to checking for operand-operator and assignment type

compatibility.

• Pattern 23, Enforcing Polymorphic Type Safety, on page 225. The

notion of type compatibility is a little bit looser in object-oriented

languages. We have to deal with polymorphic assignments. We

can, for example, assign a Manager object reference (pointer) to

an Employee reference: e = m;. Polymorphic means that a refer-

ence can point at multiple types. In contrast, assignments in non-

object-oriented languages must be between identical types. This

pattern explains how to check for polymorphic type compatibility.

Before jumping into the patterns, we need to agree on a specific lan-

guage that we can use as a common thread throughout this chapter.

There’s no way we can describe all possible semantic rules for all lan-

guages, so we’ll have to focus on a single language. Using C as a base

is a good choice because it’s the progenitor of the statically typed lan-

guages commonly in use today (C++, C#, and Java). For continuity, we’ll

augment our Cymbol language from Chapter 6, Tracking and Identify-

ing Program Symbols, on page 148 (with some more operators to make

it interesting).
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Cymbol has the following features (when in doubt, assume C++ syntax

and semantics):

• There are struct, function, and variable declarations.

• The built-in types are float, int, char, boolean, and void. Along with

built-in type boolean, we have true and false values.

• There are no explicit pointers (except in Pattern 23, Enforcing Poly-

morphic Type Safety, on page 225), but there are one-dimensional

arrays: int a[ ];. Like C++, we can initialize variables as we declare

them: int i = 3;. Also like C++, we can declare local variables any-

where within a function, not just at the start like C.

• There are if, return, assignment, and function call statements.

• The operators are +, -, *, /, <, >, <=, >=, !=, ==, !, and unary

-. Beyond the usual expression atoms like integers and identi-

fiers, we can use function calls, array references, and struct/class

member accesses.

We’re going to enforce a number of type safety rules. In a nutshell,

all operations and value assignments must have compatible operands.

In Figure 8.2, on page 219, we see the exact list of semantic type

rules. Furthermore, we’re going to check symbol categories. The type

of expressions on the left of the . member access operator must be of

type struct. Identifiers in function calls must be functions. Identifiers in

array references must be array symbols.

Now we just have to figure out how to implement those rules. All the

patterns in this chapter follow the same general three-pass strategy.

In fact, they all share the first two passes. In the first pass, a Cym-

bol parser builds an AST. In the second pass, a tree walker builds a

scope tree and populates a symbol table. Pattern 20, Computing Static

Expression Types, on the following page is the third pass over the AST

and computes the type of each expression. Pattern 21, Automatic Type

Promotion, on page 210 augments this third pass to promote arith-

metic values as necessary. We’ll assume valid input until Pattern 22,

Enforcing Static Type Safety, on page 218. In that pattern, we’ll add

type checking to the third tree pass to enforce our semantic rules.

In practice, you might squeeze the second and third or the first and

second passes into a single pass for efficiency. It might even be possi-

ble to reduce this to a single pass that parses, defines symbols, com-

putes types, and checks type compatibility. Unless run-time speed is
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critical, though, consider breaking complicated language applications

down into as many bite-size chunks as possible.

Here’s a quick summary of when to apply the patterns:

Pattern When to Apply

Pattern 20, Comput-

ing Static Expression

Types

This pattern is a component of any type

safety checker such as Pattern 22, Enforc-

ing Static Type Safety, on page 218 and Pat-

tern 23, Enforcing Polymorphic Type Safety, on

page 225.

Pattern 21, Automatic

Type Promotion, on

page 210

Automatically promoting types is also really

just a component of a type checker. If your

language doesn’t support automatic promo-

tion (like ML), you don’t need this pattern.

Pattern 22, Enforcing

Static Type Safety, on

page 218

You’ll need this pattern if you’re parsing

a non-object-oriented programming language

such as C.

Pattern 23, Enforc-

ing Polymorphic Type

Safety, on page 225

Use this pattern if you’re dealing with an

object-oriented language such as C++ or Java.

OK, let’s get to it. Don’t worry if the process of computing and checking

types seems complicated. We’ll take it slowly, component by compo-

nent. In fact, static type analysis for C and its descendents is not too

bad. The following patterns break the problem down into easy-to-digest

pieces.

220 Computing Static Expression
Types

Purpose

This pattern explains how to statically compute the type of expressions

in languages with explicit type declarations like C.

You’ll be able to extrapolate from this pattern everything you’d need to

build a static type analyzer for C, C++, Java, or C#. Every compiler for
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Subexpression Result Type

true, false boolean.

Character literal char.

Integer literal int.

Floating-point literal float.

id The declared type of the variable identified by id.

!«expr» boolean.

-«expr» The result type is the same as «expr»’s type.

«expr».id The declared type of the field identified by id.

a[«expr»] The declared array element type. For example,

a[i] has type float if a has declaration float a[ ].

f(«args») The declared return type of function f.

«expr» bop «expr» Since both operands have the same type, we can

simply choose the type of the left operand as a

result type; bop is in {+, -, *, /}.

«expr» relop «expr» boolean where relop is in {<, >, <=, >=}.

«expr» eqop «expr» boolean where eqop is in {!=, ==}.

Figure 8.1: Cymbol expression type computation rules

those languages implements an extended version of this pattern. So, do

static bug analyzers such as FindBugs1 and Coverity.2

Discussion

Type computation is an extremely broad topic. To make things more

concrete, we’ll focus on the type computation rules for Cymbol itemized

in Figure 8.1.

Computing the type of an expression is a matter of computing the type

of all elements and the result type of all operations.

1. http://findbugs.sourceforge.net

2. http://coverity.com/html/prevent-for-java.html
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For example, to compute the type of f(1)+4*a[i]+s.x, we proceed as follows:

Subexpression Result Type

1 int

f(1) int

4 int

i int

a[i] int

4*a[i] int

f(1)+4*a[i] int

s struct S

s.x int

f(1)+4*a[i]+s.x int

These computations are pretty dull because we’re assuming the oper-

ands are all the same type. Technically, we could stop computing the

type after encountering first operand: f(1). The entire expression result

type has to be integer because f returns an integer. In practice, though,

two things can happen: we might need to promote a simpler type like

char to int and sometimes programmers make mistakes (operand types

can be incompatible). This pattern just sets up the proper action plan

for the next two patterns. We’ll graft type promotion and type checking

onto this pattern later.

Implementation

The general strategy we’ll use is to parse a Cymbol program into an AST

and then walk that tree twice. The first tree walk defines symbols, and

the second walk resolves symbols and computes expression types. The

first two passes come from Pattern 18, Symbol Table for Data Aggre-

gates, on page 178, so we can focus on the final type resolution and

computation tree walk.

Once we have an AST and a populated symbol table (courtesy of Cym-

bol.g and Def.g), we can describe the type computation rules as tree

pattern-action pairs. The actions compute types and annotate the AST

with them. Using Pattern 13, External Tree Visitor, on page 133, we

could walk the tree looking for the patterns. We have to be careful,

though, how we match expression elements. For example, we have to

consider isolated identifiers and identifiers in array references differ-

ently. In ANTLR notation, that means we can’t simply make a tree pat-

tern rule like this:

id : ID {«action»} ;
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To encode context information, we need Pattern 14, Tree Grammar,

on page 136 rather than a set of isolated tree patterns. That said, we

don’t want to resort to a full tree grammar because we care only about

expressions in this pattern. To get the best of both worlds, we can use

Pattern 15, Tree Pattern Matcher, on page 140 to look for EXPR root

nodes and then invoke a type computation rule to traverse the expres-

sion subtree:

Download semantics/types/Types.g

bottomup // match subexpressions innermost to outermost

: exprRoot // only match the start of expressions (root EXPR)

;

exprRoot // invoke type computation rule after matching EXPR

: ^(EXPR expr) {$EXPR.evalType = $expr.type;} // annotate AST

;

This way we only have to specify the type computation rules and can

totally ignore the AST structure outside of expressions.

The meat of our implementation is rule expr, which computes the sub-

expression types:

Download semantics/types/Types.g

expr returns [Type type]

@after { $start.evalType = $type; } // do after any alternative

: 'true' {$type = SymbolTable._boolean;}

| 'false' {$type = SymbolTable._boolean;}

| CHAR {$type = SymbolTable._char;}

| INT {$type = SymbolTable._int;}

| FLOAT {$type = SymbolTable._float;}

| ID {VariableSymbol s=(VariableSymbol)$ID.scope.resolve($ID.text);

$ID.symbol = s; $type = s.type;}

| ^(UNARY_MINUS a=expr) {$type=symtab.uminus($a.start);}

| ^(UNARY_NOT a=expr) {$type=symtab.unot($a.start);}

| member {$type = $member.type;}

| arrayRef {$type = $arrayRef.type;}

| call {$type = $call.type;}

| binaryOps {$type = $binaryOps.type;}

;

The first few alternatives encode the type computation rules with in-

line actions for the literals and identifiers. The $ID.scope.resolve($ID.text)

expression deserves some explanation. $ID.text is the text of the identi-

fier that we need to look up with resolve( ). resolve( ) needs the identifier’s

context (surrounding scope), which our definition phase conveniently

stashed as the ID AST node’s scope field. Expression $start refers to the

first node matched by enclosing rule expr.
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The tree grammar handles the more complicated patterns via a few

small helper rules in SymbolTable such as uminus( ) and unot( ):

Download semantics/types/SymbolTable.java

public Type uminus(CymbolAST a) { return a.evalType; }

public Type unot(CymbolAST a) { return _boolean; }

Rule expr also annotates the root of the subexpression subtree with

the type it computes (via $start.evalType = $type;). Because a static type

analyzer is normally just a component of a larger language application,

we need to store type information somewhere rather than throwing it

out. We’ll store the type in field evalType of a customized AST node,

CymbolAST:

Download semantics/types/CymbolAST.java

public class CymbolAST extends CommonTree {

public Scope scope; // set by Def.g; ID lives in which scope?

public Symbol symbol; // set by Types.g; point at def in symbol table

public Type evalType; // The type of an expression; set by Types.g

Continuing on with the type computation rules, here is how to compute

the type of a member access operation:

Download semantics/types/Types.g

member returns [Type type]

: ^('.' expr ID) // match expr.ID subtrees

{ // $expr.start is root of tree matched by expr rule

$type = symtab.member($expr.start, $ID);

$start.evalType = $type; // save computed type

}

;

Notice that the left side of the operation can be any expression accord-

ing to the grammar. This handles cases such as functions that return

struct values as in f().fieldname. The member( ) method in the SymbolTable

looks up the field within the scope of the expression on the left side:

Download semantics/types/SymbolTable.java

public Type member(CymbolAST expr, CymbolAST field) {

StructSymbol scope=(StructSymbol)expr.evalType; // get scope of expr

Symbol s = scope.resolveMember(field.getText());// resolve ID in scope

field.symbol = s; // make AST point into symbol table

return s.type; // return ID's type

}

It retrieves the type of the expression via the evalType AST field. evalType

is set as a side effect of calling rule expr in member and must point at a

StructSymbol.
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The next rule computes types for array references. It also delegates

the type computation to SymbolTable (the actions for these rules will get

bigger in the following patterns; it’s a good idea to tuck them out of the

way as methods in another class):

Download semantics/types/Types.g

arrayRef returns [Type type]

: ^(INDEX ID expr)

{

$type = symtab.arrayIndex($ID, $expr.start);

$start.evalType = $type; // save computed type

}

;

The type of an array reference is just the element type of the array (the

index isn’t needed):

Download semantics/types/SymbolTable.java

public Type arrayIndex(CymbolAST id, CymbolAST index) {

Symbol s = id.scope.resolve(id.getText());

VariableSymbol vs = (VariableSymbol)s;

id.symbol = vs;

return ((ArrayType)vs.type).elementType;

}

Function calls consist of the function name and an optional list of

expressions for the arguments. The call rule collects all this informa-

tion and passes it to a helper in SymbolTable:

Download semantics/types/Types.g

call returns [Type type]

@init {List args = new ArrayList();}

: ^(CALL ID ^(ELIST (expr {args.add($expr.start);})*))

{

$type = symtab.call($ID, args);

$start.evalType = $type;

}

;

The type of a function call is the return type of the function (we’ll ignore

the argument types until we do type promotion and type checking):

Download semantics/types/SymbolTable.java

public Type call(CymbolAST id, List args) {

Symbol s = id.scope.resolve(id.getText());

MethodSymbol ms = (MethodSymbol)s;

id.symbol = ms;

return ms.type;

}
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Finally, we come to the binary operators (binary in the sense that they

have two operands). It turns out that we’ll ultimately need to deal sep-

arately with the arithmetic, relational, and equality operators. For con-

sistency with future patterns, we’ll trigger different helper methods:

Download semantics/types/Types.g

binaryOps returns [Type type]

@after { $start.evalType = $type; }

: ^(bop a=expr b=expr) {$type=symtab.bop($a.start, $b.start);}

| ^(relop a=expr b=expr) {$type=symtab.relop($a.start, $b.start);}

| ^(eqop a=expr b=expr) {$type=symtab.eqop($a.start, $b.start);}

;

Because we assume that the operand types of arithmetic operators are

identical, there is no computation to do. We can just arbitrarily pick

the type of the left operand. The relational and the equality operators

always yield boolean types:

Download semantics/types/SymbolTable.java

public Type bop(CymbolAST a, CymbolAST b) { return a.evalType; }

public Type relop(CymbolAST a, CymbolAST b) { return _boolean; }

public Type eqop(CymbolAST a, CymbolAST b) { return _boolean; }

To put everything together, we need to build an AST and then perform

two tree walks:

Download semantics/types/Test.java

// CREATE PARSER AND BUILD AST

CymbolLexer lex = new CymbolLexer(input);

final TokenRewriteStream tokens = new TokenRewriteStream(lex);

CymbolParser p = new CymbolParser(tokens);

p.setTreeAdaptor(CymbolAdaptor); // create CymbolAST nodes

RuleReturnScope r = p.compilationUnit(); // launch parser

CommonTree t = (CommonTree)r.getTree(); // get tree result

// CREATE TREE NODE STREAM FOR TREE PARSERS

CommonTreeNodeStream nodes = new CommonTreeNodeStream(t);

nodes.setTokenStream(tokens); // where to find tokens

nodes.setTreeAdaptor(CymbolAdaptor);

SymbolTable symtab = new SymbolTable();

// DEFINE SYMBOLS

Def def = new Def(nodes, symtab); // pass symtab to walker

def.downup(t); // trigger define actions upon certain subtrees

// RESOLVE SYMBOLS, COMPUTE EXPRESSION TYPES

nodes.reset();

Types typeComp = new Types(nodes, symtab);

typeComp.downup(t); // trigger resolve/type computation actions
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After the tree walks, we have annotated all nodes within expressions

with two pointers. symbol points at its symbol definition in the symbol

table, and evalType points at the node’s computed type. To print out our

handiwork, we can use Pattern 13, External Tree Visitor, on page 133

to trigger a method calledshowTypes( ) on each expression node. To get a

bottom-up, innermost to outermost traversal, we use a postorder walk:

Download semantics/types/Test.java

// WALK TREE TO DUMP SUBTREE TYPES

TreeVisitor v = new TreeVisitor(new CommonTreeAdaptor());

TreeVisitorAction actions = new TreeVisitorAction() {

public Object pre(Object t) { return t; }

public Object post(Object t) {

showTypes((CymbolAST)t, tokens);

return t;

}

};

v.visit(t, actions); // walk in postorder, showing types

Method showTypes( ) just prints out subexpressions and their types for

nodes with non-null evalType fields:

Download semantics/types/Test.java

static void showTypes(CymbolAST t, TokenRewriteStream tokens) {

if ( t.evalType!=null && t.getType()!=CymbolParser.EXPR ) {

System.out.printf("%-17s",

tokens.toString(t.getTokenStartIndex(),

t.getTokenStopIndex()));

String ts = t.evalType.toString();

System.out.printf(" type %-8s\n", ts);

}

}

Let’s run the following sample Cymbol file through our test rig:

Download semantics/types/t.cymbol

struct A {

int x;

struct B { int y; };

struct B b;

};

int i=0; int j=0;

void f() {

struct A a;

a.x = 1+i*j;

a.b.y = 2;

boolean b = 3==a.x;

if ( i < j ) f();

}
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Here’s how to build the test rig and run it on t.cymbol (it’s the same for

all patterns in this chapter):

$ java org.antlr.Tool Cymbol.g Def.g Types.g

$ javac *.java

$ java Test t.cymbol

0 type int

0 type int

a type struct A:{x, B, b}

a.x type int

1 type int

i type int

j type int

i*j type int

1+i*j type int

a type struct A:{x, B, b}

a.b type struct B:{y}

a.b.y type int

2 type int

3 type int

a type struct A:{x, B, b}

a.x type int

3==a.x type boolean

i type int

j type int

i < j type boolean

f() type void

$

This pattern identifies the basic type computations for expression ele-

ments and operations. It’s fairly restrictive in that operand types within

a single operation must be identical such as integer plus integer. Still,

we’ve created the basic infrastructure needed to support automatic pro-

motion such as adding integers and floats. The next pattern defines the

rules for arithmetic type promotion and provides a sample implemen-

tation. Its implementation builds upon the source code in this pattern.

Related Patterns

This pattern uses Pattern 18, Symbol Table for Data Aggregates, on

page 178 to build a scope tree and populate the symbol table. It uses

Pattern 13, External Tree Visitor, on page 133 to print out type informa-

tion. Pattern 21, Automatic Type Promotion, on the next page, Pattern

22, Enforcing Static Type Safety, on page 218, and Pattern 23, Enforcing

Polymorphic Type Safety, on page 225 build upon this pattern.
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