
Extracted from:

The Pragmatic Programmer
your journey to mastery

20 thAnniversary Edition

Boston • Columbus • New York • San Francisco • Amsterdam • Cape Town
Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City

São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

The Pragmatic Programmer
your journey to mastery

20 thAnniversary Edition

Dave Thomas
Andy Hunt

Boston • Columbus • New York • San Francisco • Amsterdam • Cape Town
Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City

São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the publisher
was aware of a trademark claim, the designations have been printed with initial capital letters
or in all capitals. "The Pragmatic Programmer" and the linking g device are trademarks of
The Pragmatic Programmers, LLC.

The authors and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities
(which may include electronic versions; custom cover designs; and content particular to
your business, training goals, marketing focus, or branding interests), please contact our
corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: [to come from ITP]

Copyright © 2020 Pearson Education, Inc.

All rights reserved. This publication is protected by copyright, and permission must be ob-
tained from the publisher prior to any prohibited reproduction, storage in a retrieval system,
or transmission in any form or by any means, electronic, mechanical, photocopying,
recording, or likewise. For information regarding permissions, request forms and the appro-
priate contacts within the Pearson Education Global Rights & Permissions Department,
please visit www.pearsoned.com/permissions/.

ISBN-13: 978-0-13-595705-9
ISBN-10: 0-13-595705-2

1 19

31 Inheritance Tax

You wanted a banana but what you got was a gorilla
holding the banana and the entire jungle.

 ➤ Joe Armstrong

Do you program in an object-oriented language? Do you use inheritance?

If so, stop! It probably isn’t what you want to do.

Let’s see why.

Some Background
Inheritance first appeared in Simula 67 in 1969. It was an elegant solution
to the problem of queuing multiple types of events on the same list. The
Simula approach was to use something called prefix classes. You could write
something like this:

link CLASS car;
 ... implementation of car

link CLASS bicycle;
 ... implementation of bicycle

You could then add both cars and bicycles to the list of things waiting at (say)
a traffic light. In current terminology, link would be a parent class.

The mental model used by Simula programmers was that the instance data
and implementation of class link was prepended to the implementation of
classes car and bicycle. The link part was almost viewed as being a container that
carried around cars and bicycles. This gave them a form of polymorphism:
cars and bicycles both implemented the link interface because they both con-
tained the link code.

After Simula came Smalltalk. Alan Kay, one of the creators of Smalltalk,
describes in a 2019 Quora answer8 why Smalltalk has inheritance.

So when I designed Smalltalk-72—and it was a lark for fun while thinking about
Smalltalk-71—I thought it would be fun to use its Lisp-like dynamics to do
experiments with “differential programming” (meaning: various ways to accomplish
“this is like that except”).

8. https://www.quora.com/What-does-Alan-Kay-think-about-inheritance-in-object-oriented-programming

• Click HERE to purchase this book now. discuss

https://www.quora.com/What-does-Alan-Kay-think-about-inheritance-in-object-oriented-programming
http://pragprog.com/titles/tpp20
http://forums.pragprog.com/forums/tpp20

This is subclassing purely for behavior.

These two styles of inheritance (which actually had a fair amount in common)
developed over the following decades. The Simula approach, which suggested
inheritance was a way of combining types, continued in languages such as
C++ and Java. The Smalltalk school, where inheritance was a dynamic orga-
nization of behaviors, was seen in languages such as Ruby and JavaScript.

So, now we’re faced with a generation of OO developers who use inheritance
for one of two reasons:

• they don’t like typing
• they like types

Those who don’t like typing save their fingers by using inheritance to add
common functionality from a base class into child classes: class User and class
Product are both subclasses of ActiveRecord::Base.

Those who like types use inheritance to express the relationship between
classes: a Car is-a-kind-of Vehicle.

Unfortunately both kinds of inheritance have problems.

Problems Using Inheritance to Share Code.
Inheritance is coupling. Not only is the child class coupled to the parent, the
parent’s parent, and so on; but the code that uses the child is also coupled
to all the ancestors.

class Vehicle
def initialize

 @speed = 0
end
def stop

 @speed = 0
end
def move_at(speed)

 @speed = speed
end

end

class Car < Vehicle
def info

"I'm car driving at #{@speed}"
end

end

top-level code
my_ride = Car.new

• 4

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/tpp20
http://forums.pragprog.com/forums/tpp20

my_car.move_at(30)

When the top-level calls my_car.move_at, the method being invoked is in Vehicle,
the parent of Car.

Now the developer in charge of Vehicle changes the API, so move_at becomes
set_velocity, and the instance variable @speed becomes @velocity.

An API change is expected to break clients of Vehicle class. But the top-level is
not: as far as it is concerned it is using a Car. What the Car class does in terms
of implementation is not the concern of the top-level code, but it still breaks.

Similarly the name of an instance variable is purely an internal implementation
detail, but when Vehicle changes it also (silently) breaks Car.

So much coupling.

Problems Using Inheritance To Build Types

Vehice

Car Bicycle

Some folks view inheritance as a way of defining new
types. Their favorite design diagram shows class
hierarchies. They view problems the way Victorian
gentleman scientists viewed nature, as something to
be broken down into categories.

Hjadjh

Ykjbf8 W09uoilkn

Hjadjh

Ykjbf8 W09uoilkn

Hjadjh

Ykjbf8 W09uoilkn

Hjadjh

Ykjbf8 W09uoilkn

Hjadjh

Hjadjh

Hjadjh

Hjadjh

Ykjbf8

W09uoilkn
Hjadjh

Ykjbf8

W09uoilkn Hjadjh

Ykjbf8 W09uoilkn

Hjadjh

Hjadjh

Hjadjh

W09uoilkn

W09uoilkn

Unfortunately, these diagrams soon grow into wall-
covering monstrosities, layer-upon-layer added in
order to express the smallest nuance of differentiation
between classes. This added complexity can make
the application more brittle, as changes can ripple
up and down many layers.

Even worse, though, is the multiple inheritance issue. A Car may be a kind of
Vehicle, but it can also be a kind of Asset, InsuredItem, LoanCollateral and so on. Modeling
this correctly would need multiple inheritance.

C++ gave multiple inheritance a bad name in the 1990s because of some
questionable disambiguation semantics. As a result, many current OO lan-
guages don’t offer it. So, even if you’re happy with complex type trees, you
won’t be able to model your domain accurately anyway.

Don’t Pay Inheritance TaxTip 51

• Click HERE to purchase this book now. discuss

Inheritance Tax • 5

http://pragprog.com/titles/tpp20
http://forums.pragprog.com/forums/tpp20

The Alternatives Are Better
Let us suggest three techniques that mean you should never need to use
inheritance again:

• interfaces and protocols
• delegation
• mixins and traits

Interfaces and Protocols

Most OO languages allow you to specify that a class implements one or more
sets of behaviors. You could say, for example, that a Car class implements the
Drivable behavior and the Locatable behavior. The syntax used for doing this varies:
in Java, it might look like this:

public class Car implements Drivable, Locatable {
// ...

}

Drivable and Locatable are what Java calls interfaces; other languages call them
protocols, and some call them traits (although this is not what we’ll be calling
a trait later).

Interfaces are defined like this:

public interface Drivable {
double getSpeed();
void stop();

}

public interface Locatable() {
 Coordinate getLocation();
boolean locationIsValid();

}

These declarations create no code: they simply say that any class that
implements Drivable must implement the two methods getSpeed and stop, and a
class that’s Locatable must implement getLocation and locationIsValid. This means that
our previous class definition of Car will only be valid if it includes all four of
these methods.

What makes interfaces and protocols so powerful is that we can use them as
types, and any class that implements the appropriate interface will be com-
patible with that type. If Car and Phone both implement Locatable, we could store
both in an list of locatable items:

List<Locatable> items = new ArrayList<>();

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/tpp20
http://forums.pragprog.com/forums/tpp20

items.add(new Car(...));
items.add(new Phone(...));
items.add(new Car(...));
// ...

We can then process that list, safe in the knowledge that every item has getLo-
cation and locationIsValid.

void printLocation(Locatable item) {
if (item.locationIsValid() {

 print(item.getLocation().asString());
}

// ...

items.forEach(printLocation);

Prefer Interfaces To Express PolymorphismTip 52

Interfaces and protocols give us polymorphism without inheritance.

Delegation

Inheritance encourages developers to create classes whose objects have large
numbers of methods. If a parent class has 20 methods, and the subclass
wants to make use of just two of them, its objects will still have the other 18
just lying around and callable. The class has lost control of its interface. This
is a common problem: many persistence and UI frameworks insist that
application components subclass some supplied base class:

class Account < PersistenceBaseClass
end

The Account class now carries all of the persistence class’s API around with it.
Instead, imagine an alternative using delegation:

class Account
def initialize(. . .)

 @repo = Persister.for(self)
end

def save
 @repo.save()
end

end

We now expose none of the framework API to the clients of our Account class:
that decoupling is now broken. But there’s more. Now that we’re no longer
constrained by the API of the framework we’re using, we’re free to create the

• Click HERE to purchase this book now. discuss

Inheritance Tax • 7

http://pragprog.com/titles/tpp20
http://forums.pragprog.com/forums/tpp20

API we need. Yes, we could do that before, but we always ran the risk that
the interface we wrote can by bypassed, and the persistence API used instead.
Now we control everything.

Delegate to Services: Has-A Trumps Is-ATip 53

In fact, we can take this a step further. Why should an Account have to know
how to persist itself? Isn’t its job to know and enforce the account business
rules?

class Account
nothing but account stuff

end

class AccountRecord
wraps an account with the ability
to be fetched and stored

end

Now we’re really decoupled, but it has come at a cost. We’re having to write
more code, and typically some of it will be boilerplate: it’s likely that all our
record classes will need to find method, for example.

Fortunately, that’s what mixins and traits do for us.

Mixins, Traits, Categories, Protocol Extensions, …

As an industry, we love to give things names. Quite often we’ll give the same
thing many names. More is better, right?

That’s what we’re dealing with when we look at mixins. The basic idea is
simple: we want to be able to extend classes and objects with new functional-
ity without using inheritance. So we create a set of these functions, give that
set a name, and then somehow extend a class or object with them. At that
point, you’ve created a new class or object that combines the capabilities of
the original and all its mixins. In most cases, you’ll be able to make this
extension even if you don’t have access to the source code of the class you’re
extending.

Now the implementation and name of this feature varies between languages.
We’ll tend to call them mixins here, but we really want you to think of this as
a language-agnostic feature. And we’ll focus on just the functional that all
these implementations have: merging functionality between existing things
and new things.

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/tpp20
http://forums.pragprog.com/forums/tpp20

As an example, let’s go back to our AccountRecord example. As we left it, an
AccountRecord needed to know about both accounts and about our persistence
framework. It also needed to delegate all the methods in the persistence layer
that it wanted to expose to the outside world.

Mixins give us an alternative. First, we could write a mixin that implements
(for example) two of three of the standard finder methods. We could then add
them into AccountRecord as a mixin. And, as we write new classes for persisted
things, we can add the mixin to them, too.

mixin CommonFinders {
def find(id) { ... }
def findAll() { ... }

end

class AccountRecord extends BasicRecord with CommonFinders
class OrderRecord extends BasicRecord with CommonFinders

We can take this a lot further. For example, we all know our business objects
need validation code to prevent bad data from infiltrating our calculations.
But exactly what do we mean by validation?

If we take an account, for example, there are probably many different layers
of validation that could be applied:

• validating a hashed password matches one entered by the user
• validating form data entered by the user when an account is created
• validating form data entered by an admin person updating the user details
• validating data added to the account by other system components
• validating data for consistency before it is persisted

A common (and we believe less-than-ideal) approach is to bundle all the vali-
dations into a single class (the business object/persistence object) and then
add flags to control which fire in which circumstances.

We think a better way is to use mixins to create specialized classes for
appropriate situations:

class AccountForCustomer extends Account
with AccountValidations,AccountCustomerValidations

class AccountForAdmin extends Account
with AccountValidations,AccountAdminValidations

Here, both derived classes include validations common to all account objects.
The customer variant also includes validations appropriate for the customer-

• Click HERE to purchase this book now. discuss

Inheritance Tax • 9

http://pragprog.com/titles/tpp20
http://forums.pragprog.com/forums/tpp20

facing APIs, while the admin variant contained (the presumably less restrictive)
admin validations.

Now, by passing instances of AccountForCustomer or AccountForAdmin back and forth,
our code automatically ensures the correct validation is applied.

Use Mixins to Share FunctionalityTip 54

Inheritance is Rarely the Answer
We’ve had a quick look at three alternatives to traditional class inheritance:

• interfaces and protocols
• delegation
• mixins and traits

Each of these methods may be better for you in different circumstances,
depending on whether your goal is sharing type information, adding function-
ality, or sharing methods. As with anything in programming, aim to use the
technique that best expresses your intent.

And try not to drag the whole jungle along for the ride.

Related Sections Include
• Topic 28, Decoupling, on page ?
• Topic 8, The Essence of Good Design, on page ?
• Topic 10, Orthogonality, on page ?

Challenges
• The next time you find yourself subclassing, take a minute to examine

the options. Can you achieves what you want with interfaces, delegation,
and/or mixins? Can you reduce coupling by doing so?

• 10

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/tpp20
http://forums.pragprog.com/forums/tpp20

