
Extracted from:

The ThoughtWorks Anthology
Essays on Software Technology and Innovation

This PDF file contains pages extracted from The ThoughtWorks Anthology, published by

the Pragmatic Bookshelf. For more information or to purchase a paperback or PDF copy,

please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This is

available only in online versions of the books. The printed versions are black and white.

Pagination might vary between the online and printer versions; the content is otherwise

identical.

Copyright © 2008The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any

means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragprog.com

Chapter 3

One Lair and Twenty Ruby DSLs
by Martin Fowler, Chief Scientist

Much of the reason for Ruby’s recent popularity is its suitability as

a base for writing internal domain-specific languages. Internal DSLs

are domain-specific languages written using a valid subset of a host

language. There’s a resurgence about doing them in the Ruby at the

moment.

Internal DSLs are an old idea particularly popular in Lisp circles. Many

Lispers dismiss Ruby as having nothing new to offer in this space. One

feature that does make Ruby interesting is the wide range of different

techniques you can use in the language to develop an internal DSL.

Lisp gives you some great mechanisms but relatively few compared to

Ruby, which offers many options.

My purpose in this essay is to explore lots of these options for a single

example so you have a sense of the possibilities and so you can consider

which techniques work for you more than others.

3.1 My Lair Example

For the rest of this chapter I’ll use a simple example to explore the

alternative techniques. The example is a common, interesting abstract

problem of configuration. You see this in all sorts of equipment: if you

want x, you need to have a compatible y. You see this configuration

problem when buying computers, installing software, and doing lots of

other less nerdy pursuits.

MY LAIR EXAMPLE 26

For this particular case, imagine a company that specializes in provid-

ing complex equipment to evil megalomaniacs who want to conquer the

world. Judging by the amount of films about them, it’s a large market—

and one made better by the fact that these lairs keeping getting blown

up by glamorous secret agents.

So, my DSL will express the configuration rules for things that megalo-

maniacs put in lairs. This example DSL will involve two kinds of things:

items and resources. Items are concrete things such as cameras and

acid baths. Resources are amounts of stuff you need, like electricity.

I have two kinds of resources in my example: electricity and acid. I

assume that resources have potentially lots of different properties that

need to be matched. For instance, I’ll need to check that all the items’

power needs are supplied by power plants in the lair (evil geniuses

don’t like bothering with utilities). As a result, each resource will be

implemented by its own class in my abstract representation.

For the sake of the problem, I assume resources fall into two categories,

simple ones that have a small, fixed number of properties that can thus

be rendered as arguments in the constructor (electricity) and complex

ones with many optional properties that need lots of setting methods

(acid). Acid actually has only two properties for this example, but just

imagine there are dozens of them.

When it comes to items, I can say three things about them: they use

resources, they provide resources, and they depend on another item

that needs to be present in the lair.

Now for the curious, here’s the implementation of this abstract repre-

sentation. I’ll use the same abstract representation for all the examples

I’ll discuss:

Download lairs/model.rb

class Item

attr_reader :id, :uses, :provisions, :dependencies

def initialize id

@id = id

@uses = []

@provisions = []

@dependencies = []

end

def add_usage anItem

@uses << anItem

end

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/twa/code/lairs/model.rb
http://www.pragprog.com/titles/twa

MY LAIR EXAMPLE 27

def add_provision anItem

@provisions << anItem

end

def add_dependency anItem

@dependencies << anItem

end

end

class Acid

attr_accessor :type, :grade

end

class Electricity

def initialize power

@power = power

end

attr_reader :power

end

I store any particular configuration in a configuration object:

Download lairs/model.rb

class Configuration

def initialize

@items = {}

end

def add_item arg

@items[arg.id] = arg

end

def [] arg

return @items[arg]

end

def items

@items.values

end

end

For the purpose of this chapter, I’ll define just a few items and their

rules:

• An acid bath uses 12 units of electricity and grade-5 hydrochloric

acid (HCl).

• A camera uses 1 unit of electricity.

• A small power plant provides 11 units of electricity and depends

on a secure air vent in the lair.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/twa/code/lairs/model.rb
http://www.pragprog.com/titles/twa

USING GLOBAL FUNCTIONS 28

I can state these rules in terms of the abstract representation like this:

Download lairs/rules0.rb

config = Configuration.new

config.add_item(Item.new(:secure_air_vent))

config.add_item(Item.new(:acid_bath))

config[:acid_bath].add_usage(Electricity.new(12))

acid = Acid.new

config[:acid_bath].add_usage(acid)

acid.type = :hcl

acid.grade = 5

config.add_item(Item.new(:camera))

config[:camera].add_usage(Electricity.new(1))

config.add_item(Item.new(:small_power_plant))

config[:small_power_plant].add_provision(Electricity.new(11))

config[:small_power_plant].add_dependency(config[:secure_air_vent])

Although this code populates the configuration, it isn’t very fluent. The

rest of this chapter explores different ways of writing code to express

these rules in a better way.

3.2 Using Global Functions

Functions are the most basic structuring mechanism in programming.

They provide the earliest way to structure software and to introduce

domain names into a program.

So, my first attempt at a DSL might be to use a sequence of global

function calls:

Download lairs/rules8.rb

item(:secure_air_vent)

item(:acid_bath)

uses(acid)

acid_type(:hcl)

acid_grade(5)

uses(electricity(12))

item(:camera)

uses(electricity(1))

item(:small_power_plant)

provides(electricity(11))

depends(:secure_air_vent)

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/twa/code/lairs/rules0.rb
http://media.pragprog.com/titles/twa/code/lairs/rules8.rb
http://www.pragprog.com/titles/twa

USING GLOBAL FUNCTIONS 29

The function names introduce the vocabulary of the DSL: item declares

an item, and uses indicates that an item uses a resource.

The configuration rules in this DSL are all about relationships. When I

say a camera uses 1 unit of electricity, I want to make a link between

an item called camera and an electricity resource. In this first lair

expression, this linkage is done through a context established by the

sequence of commands. The line uses(electricity(1)) applies to the camera

item because it immediately follows the declaration of camera. I might

say that this relationship is defined implicitly by the sequential context

of the statements.

As a human, you can infer the sequential context by how you read the

DSL text. When processing the DSL, however, the computer needs a bit

more help. To keep track of the context, I use special variables as I load

the DSL; unsurprisingly, they’re called context variables. One context

variable keeps track of the current item:

Download lairs/builder8.rb

def item name

$current_item = Item.new(name)

$config.add_item $current_item

end

def uses resource

$current_item.add_usage(resource)

end

Since I am using global functions, I need to use global variables for

my context variables. This isn’t that great, but as you’ll see, there are

ways to avoid this in many languages. Indeed, using global functions is

hardly ideal either, but it serves as a starting point.

I can use the same trick to handle the properties of the acid:

Download lairs/builder8.rb

def acid

$current_acid = Acid.new

end

def acid_type type

$current_acid.type = type

end

Sequential context works for the links between an item and its re-

sources but is not very good for handling the nonhierarchical links

between dependent items. Here I need to make explicit relationships

between items. I can do this by giving an item an identifier when I

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/twa/code/lairs/builder8.rb
http://media.pragprog.com/titles/twa/code/lairs/builder8.rb
http://www.pragprog.com/titles/twa

USING GLOBAL FUNCTIONS 30

declare it (item(:secure_air_vent)) and using that identifier when I need

to refer to it later (depends(:secure_air_vent). The fact that it is the small

power plant that depends on the secure air vent is handled through

sequential context.

A useful distinction here is that the resources are what Evans calls

value objects [Eva03]. As a result, they aren’t referred to other than by

their owning item. Items themselves, however, can be referred to in any

way in the DSL through the dependency relationship. As a result, items

need some kind of identifier so that I can refer to them later.

The Ruby way of handling an identifier like this is to use a symbol data

type: :secure_air_vent. A symbol in Ruby is a sequence of nonwhites-

pace characters beginning with a colon. Symbol data types aren’t in

many mainstream languages. You can think of them as like strings,

but for the particular purpose of this kind of usage. As a result, you

can’t do many of the usual string operations on them, and they are

also designed so all uses of them share the same instance. This makes

them more efficient for lookups. However, I find the most important

reason to use them is that they indicate my intent of how I treat them.

I’m using :secure_air_vent as a symbol, not a string, so picking the right

data type makes my intent clear.

Another way of doing this, of course, is to use variables. I tend to shy

away from variables in a DSL. The problem with variables is that they

are variable. The fact that I can put a different object in the same vari-

able means I have to keep track of which object is in which variable.

Variables are a useful facility, but they are awkward to keep track of.

For DSLs I can usually avoid them. The difference between an iden-

tifier and a variable is that an identifier will always refer to the same

object—it doesn’t vary.

Identifiers are necessary for the dependency relationship, but they can

also be used to handle resources as an alternative to using sequential

context:

Download lairs/rules7.rb

item(:secure_air_vent)

item(:acid_bath)

uses(:acid_bath, acid(:acid_bath_acid))

acid_type(:acid_bath_acid, :hcl)

acid_grade(:acid_bath_acid, 5)

uses(:acid_bath, electricity(12))

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/twa/code/lairs/rules7.rb
http://www.pragprog.com/titles/twa

USING OBJECTS 31

item(:camera)

uses(:camera, electricity(1))

item(:small_power_plant)

provides(:small_power_plant, electricity(11))

depends(:small_power_plant, :secure_air_vent)

Using identifiers like this means I’m being explicit about the relation-

ships, and it also allows me to avoid using global context variables.

These are both usually good things: I do like being explicit, and I don’t

like global variables. However, the cost here is a much more verbose

DSL. I think it’s valuable to use some form of implicit mechanism in

order to make the DSL more readable.

3.3 Using Objects

One of the principal problems of using functions as I did earlier is that

I have to define global functions for the language. A large set of global

functions can be difficult to manage. One of the advantages of using

objects is that I can organize my functions by classes. By arranging my

DSL code properly, I can keep the DSL functions collected together and

out of any global function space.

Class Methods and Method Chaining

The most obvious way to control the scope of methods in an object-

oriented language is to use class methods. Class methods do help

scope the use of functions but also introduce repetition because the

class name has to be used with each call. I can reduce the amount of

that repetition considerably by pairing the class methods with method

chaining, as in this example:

Download lairs/rules11.rb

Configuration.item(:secure_air_vent)

Configuration.item(:acid_bath).

uses(Resources.acid.

set_type(:hcl).

set_grade(5)).

uses(Resources.electricity(12))

Configuration.item(:camera).uses(Resources.electricity(1))

Configuration.item(:small_power_plant).

provides(Resources.electricity(11)).

depends_on(:secure_air_vent)

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/twa/code/lairs/rules11.rb
http://www.pragprog.com/titles/twa

USING OBJECTS 32

Here I begin each of my DSL clauses with a call to a class method. That

class method returns an object that is used as a receiver for the next

call. I can then repeatedly return the object for the next call to chain

together multiple method calls. In some places, the method chaining

becomes a little awkward, so I use class methods again.

It’s worth digging into this example in more detail so you can see what’s

happening. As you do this, remember that this example does have some

faults that I’ll explore, and remedy, in some later examples.

I’ll begin with the opening of the definition of an item:

Download lairs/builder11.rb

def self.item arg

new_item = Item.new(arg)

@@current.add_item new_item

return new_item

end

This method creates a new item, puts it into a configuration stored in a

class variable, and returns it. Returning the newly created item is the

key here, because this sets up the method chain.

Download lairs/builder11.rb

def provides arg

add_provision arg

return self

end

The provides method just calls the regular adder but again returns itself.

This continues the chain, and the other methods work the same way.

Using method chaining like this is at odds with a lot of good program-

ming advice. In many languages the convention is that modifiers (meth-

ods that change an object’s state) do not return anything. This follows

the principle of command query separation, which is a good and use-

ful principle and one that’s worth following most of the time. Unfortu-

nately, it is at odds with a flowing internal DSL. As a result, DSL writ-

ers usually decide to drop this principle while they are within DSL code

in order to support method chaining. This example also uses method

chaining to set the type and grade of acid.

A further change from regular code guidelines is a different approach to

formatting. In this case, I’ve laid out the code to emphasize the hierar-

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/twa/code/lairs/builder11.rb
http://media.pragprog.com/titles/twa/code/lairs/builder11.rb
http://www.pragprog.com/titles/twa

USING OBJECTS 33

chy that the DSL suggests. With method chaining you often see method

calls broken over newlines.

As well as demonstrating method chaining, this example demonstrates

how to use a factory class to create resources. Rather than add methods

to the Electricity class, I define a resources class that contains class

methods to create instances of electricity and acid. Such factories are

often called class factories or static factories because they contain only

class (static) methods for creating appropriate objects. They can often

make DSLs more readable, and you avoid putting extra methods on the

actual model classes.

This highlights one of the problems with this DSL fragment. To make

this work, I have to add a number of methods to the domain classes—

methods that don’t sit well. Most methods on an object should make

sense as individual calls. But DSL methods are written to make sense

within the context of DSL expressions. As a result, the naming, as well

as principles such as command query separation, are different. Fur-

thermore, DSL methods are very context specific, and they should be

used only within DSL expressions when creating objects. Basically, the

principles for good DSL methods aren’t the same as what makes regular

methods work effectively.

Expression Builder

A way of avoiding these clashes between DSLs and regular APIs is to use

the Expression Builder pattern. Essentially this says that the methods

that are used in a DSL should be defined on a separate object that

creates the real domain object. You can use the Expression Builder

pattern in a couple of ways. One route here is to use the same DSL

language but to create builder objects instead of domain objects.

To do this, I can change my initial class method call to return a different

item builder object:

Download lairs/builder12.rb

def self.item arg

new_item = ItemBuilder.new(arg)

@@current.add_item new_item.subject

return new_item

end

The item builder supports the DSL methods and translates these onto

methods on the real item object.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/twa/code/lairs/builder12.rb
http://www.pragprog.com/titles/twa

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers

will be there with more titles and products to help you stay on top of your game.

Visit Us Online
ThoughtWorks Anthology’s Home Page

http://pragprog.com/titles/twa

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments in the news.

Buy the Book
If you liked this PDF, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com/titles/twa.

Contact Us
Phone Orders: 1-800-699-PROG (+1 919 847 3884)

Online Orders: www.pragprog.com/catalog

Customer Service: orders@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

http://pragprog.com/titles/twa
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/twa
www.pragprog.com/catalog

	Contents
	Introduction
	Solving the Business Software ``Last Mile''
	The Source of the ``Last Mile'' Problem
	Understanding the Problem
	Solving the ``Last Mile'' Problem
	People
	Automation
	Design for Automated Testing of Nonfunctional Requirements
	Decouple Design from Production Environment
	Versionless Software

	One Lair and Twenty Ruby DSLs
	My Lair Example
	Using Global Functions
	Using Objects
	Using Closures
	Evaluation Context
	Literal Collections
	Dynamic Reception
	Final Thoughts

	The Lush Landscape of Languages
	Introduction
	The Specimens
	The Variety of Varieties
	The Tree of Life for Languages
	That's All Very Interesting, But Why Should You Care?

	Polyglot Programming
	Polyglot Programming
	Reading Files the Groovy Way
	JRuby and isBlank
	Jaskell and Functional Programming
	Testing Java
	Polyglot Programming the Future

	Object Calisthenics
	Nine Steps to Better Software Design Today
	The Exercise
	Conclusion

	What Is an Iteration Manager Anyway?
	What Is an Iteration Manager?
	What Makes a Good Iteration Manager?
	What an Iteration Manager Is Not
	The Iteration Manager and the Team
	The Iteration Manager and the Customer
	The Iteration Manager and the Iteration
	The Iteration Manager and the Project
	Conclusion

	Project Vital Signs
	Project Vital Signs
	Project Vital Signs vs. Project Health
	Project Vital Signs vs. Information Radiator
	Project Vital Sign: Scope Burn-Up
	Project Vital Sign: Delivery Quality
	Project Vital Sign: Budget Burn-Down
	Project Vital Sign: Current State of Implementation
	Project Vital Sign: Team Perceptions

	Consumer-Driven Contracts: A Service Evolution Pattern
	Evolving a Service: An Example
	Schema Versioning
	Breaking Changes
	Consumer-Driven Contracts

	Domain Annotations
	Domain-Driven Design Meets Annotations
	Case Study: Leroy's Lorries
	Summary

	Refactoring Ant Build Files
	Introduction
	Ant Refactoring Catalog
	Summary
	References
	Resources

	Single-Click Software Release
	Continuous Build
	Beyond Continuous Build
	Full Lifecycle Continuous Integration
	The Check-in Gate
	The Acceptance Test Gate
	Preparing to Deploy
	Subsequent Test Stages
	Automating the Process
	Conclusion

	Agile vs. Waterfall Testing for Enterprise Web Apps
	Introduction
	Testing Life Cycle
	Types of Testing
	Environments
	Issue Management
	Tools
	Reports and Metrics
	Testing Roles
	References

	Pragmatic Performance Testing
	What Is Performance Testing?
	Requirements Gathering
	Running the Tests
	Communication
	Process
	Summary

	Bibliography
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

