Extracted from:

The ThoughtWorks Anthology 2

More Essays on Software Technology and Innovation

This PDF file contains pages extracted from The ThoughtWorks Anthology 2, pub-
lished by the Pragmatic Bookshelf. For more information or to purchase a paper-
back or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printer versions; the

content is otherwise identical.

Copyright © 2012 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

The Pragmatic Bookshelf

Dallas, Texas - Raleigh, North Carolina

http://www.pragprog.com

Thou %tWorks
nthology 2

More Essays on
Software Technology
and Innovation

Edited by Michael Swaine

The ThoughtWorks Anthology 2

More Essays on Software Technology and Innovation

Farooq Ali Ola Bini
Brian Blignaut James Bull
Neal Ford Martin Fowler

Luca Grulla Alistair Jones
Aman King Patrick Kua
Marc McNeill Julio Maia
Mark Needham Sam Newman

Rebecca Parsons Cosmin Stejerean

The Pragmatic Bookshelf

Dallas, Texas « Raleigh, North Carolina

Haskell

Of all the functional languages on this list, Haskell can definitely be said to
take the functional paradigm the furthest. Haskell is a pure functional pro-
gramming language, which means the language doesn’t support mutability
or side effects in any way. Of course, that’s a truth with modification, since
if it truly didn’t support any side effects, you couldn’t get it to print anything
or take input from a user. Haskell does make it possible to do I/O and things
that look like side effects, but in the language model, no side effects are
actually occurring.

Another aspect that makes Haskell a fundamentally different language is that
it’s a lazy language. That means arguments to functions aren’t evaluated until
they are actually needed. This makes it really easy to do things such as create
infinite streams, recursive function definitions, and many other useful things.
Since there are no side effects, you usually won't notice that Haskell is lazy,
unless you specifically utilize this aspect of the language.

Ever since ML, functional programming languages have branched into two
different families of languages—the ones that use static typing and the ones
that don’t. Haskell is one of the more advanced statically typed functional
languages, and its type system can express many things that are hard to
express in other languages. However, even though the type system is very
capable, it usually doesn’t intrude much when actually writing a program.
In most cases, you don’t have to put types on functions or names; Haskell
will use type inference to figure out the correct types by itself.

Haskell does not have a type system with inheritance. Instead, it uses
generics to a large degree. A big part of this system is due to something called
type classes. These classes allow you to add polymorphic behavior to existing
types. You can think of type classes as interfaces with implementations that
can be added to a class after it’s been defined. It’s a very powerful feature of
Haskell, and once you start using it, you will miss it in other languages.

All in all, Haskell is a very powerful language. It is used by researchers to
push the borders in many different areas, which means many new interesting
libraries will first be available in Haskell. As an example, Haskell has support
for many different concurrency paradigms, including Software Transactional
Memory (STM) and nested data parallelism.

It is kind of weird to start a code example of Haskell with a “Hello, World”
example, since the things that make it possible to create I/0O in Haskell have
a tendency to complicate things a bit. But no matter, let’'s see what it looks
like.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/twa2
http://forums.pragprog.com/forums/twa2

*6

MostInterestingLanguages/haskell/hello.hs
module Main where

main = do
hello "Ola"
hello "Stella"

hello name = putStrLn ("Hello " ++ name)

To run this as a stand-alone file, we have to define a main() function inside a
module called Main. The do keyword allow us to do several things after each
other. Finally, we define hello() to be a function that takes one argument,
concatenates that argument with "Hello ", and then prints it.

When we compile and run this code, it looks like this:

$ ghc -o hello hello.hs
$./hello

Hello Ola

Hello Stella

Just as with Erlang, Haskell is really good at pattern matching. I haven’t
mentioned it yet, but Haskell is a whitespace-significant language, which
means it uses whitespace to determine structure, just like CoffeeScript and
Python. When it comes to pattern matching, this results in quite clean-looking
programs. The following creates a data type for representing shapes and then
uses pattern matching to calculate the area for different shapes. It also
revisits our example of reversing a list by recursion and pattern matching.

MostInterestingLanguages/haskell/patterns.hs
module Main where

type Radius = Double

type Side = Double
data Shape =
Point

| Circle Radius

| Rectangle Side Side

| Square Side
area Point =0
area (Circle r) =pi*r*r
area (Rectangle w h) = w * h
area (Square s) =5 *s

rev [1 = []
rev (x:xs) = rev xs ++ [X]

main = do
print (area Point)

« Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/twa2/code/MostInterestingLanguages/haskell/hello.hs
http://media.pragprog.com/titles/twa2/code/MostInterestingLanguages/haskell/patterns.hs
http://pragprog.com/titles/twa2
http://forums.pragprog.com/forums/twa2

print (area (Circle 10))

print (area (Rectangle 20 343535))
print (area (Square 20))

print (rev [42, 55, 10, 20])

This gives the following output:

$ ghc -o patterns patterns.hs
$./patterns

0.0

314.1592653589793

6870700.0

400.0

[20,10,55,42]

As you can see, most function definitions in Haskell look a lot like algebraic
statements. When defining a data type like Shape, we enumerate all the possi-
bilities and say what data the possibilities must take. Then, when we dispatch
based on the data in the call to area(), we also pick out the data contained in
the data type.

I mentioned earlier that Haskell is a lazy language. That can be easily
demonstrated when defining something that works with infinity, for example.

MostinterestingLanguages/haskell/lazy.hs
module Main where

fromn=n: (from (n + 1))

main = do
print (take 10 (from 20))

This code looks deceptively simple. The take() function is defined in the Haskell
core library. It will take as many elements from the given list as you specify
(ten in this case). Our function from() uses the colon to construct a new list.
That list is defined as the value of n and then the list you get from calling
from() again, with n + 1. In most languages, any time you call this function, it
will recurse forever, and that’s game over. But Haskell will evaluate from() only
enough times to get the values it needs. This is pretty deep stuff and usually
takes some time to sink in. Just remember, there is nothing special with the
colon operator here. It’s just the way Haskell evaluates things.

The result of running the code looks like this:

$ ghc -o lazy lazy.hs
$./lazy
[20,21,22,23,24,25,26,27,28,29]

« Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/twa2/code/MostInterestingLanguages/haskell/lazy.hs
http://pragprog.com/titles/twa2
http://forums.pragprog.com/forums/twa2

*8

The final thing I wanted to show about Haskell is something called type
classes. Since Haskell is not object-oriented and doesn’t have inheritance, it
becomes really cumbersome to do things such as define a generic function
that can print things, test equality, or do a range of other things. Type classes
solve this problem, by basically allowing you to switch implementations based
on what type Haskell thinks something is. This can be extremely powerful
and very unlike anything you've seen in traditional object-oriented languages.
So, let’s take a look at an example.

MostinterestingLanguages/haskell/type_classes.hs
module Main where

type Name = String

data Platypus =
Platypus Name
data Bird =
Pochard Name
| RingedTeal Name
| WoodDuck Name

class Duck d where
quack :: d -> I0 ()
walk :: d ->I0 ()

instance Duck Platypus where
quack (Platypus name) = putStrLn ("QUACK from Mr Platypus " ++ name)
walk (Platypus) = putStrLn "*platypus waddle*"
instance Duck Bird where
quack (Pochard name) = putStrLn ("(quack) says " ++ name)
quack (RingedTeal name) = putStrLn ("QUACK!! says the Ringed Teal " ++ name)
quack (WoodDuck) = putStrLn "silence... "
walk _ = putStrLn "*WADDLE*"

main = do
quack (Platypus "Arnold")
walk (Platypus "Arnold")
quack (Pochard "Donald")
walk (Pochard "Donald")
quack (WoodDuck "Pelle")
walk (WoodDuck "Pelle")

We have several things going on here. First, we define two data types: one for
birds and one for platypuses, which both receive names. Then we create a
type class called Duck. We know that if something quacks like a duck and
walks like a duck, it is a duck. So, the type class Duck defines two functions
called quack() and walk(). These declarations specify only the types of the argu-
ments and what return type is expected. These type signatures specify that

« Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/twa2/code/MostInterestingLanguages/haskell/type_classes.hs
http://pragprog.com/titles/twa2
http://forums.pragprog.com/forums/twa2

*9

they take a ducklike thing and then print something. After that, we define an
instance of the type class for our Platypus. We simply define the functions
necessary inside that instance, just as we would have when defining a top-
level function in Haskell. Then we do the same thing for our birds, and finally
we actually call quack() and walk() on a few different data instances.

When running this example, we see that it behaves exactly as we would want.

$ ghc -o type_classes type_classes.hs
$./type_classes

QUACK from Mr Platypus Arnold
platypus waddle

(quack) says Donald

WADDLE

silence...

WADDLE

Type classes are extremely powerful, and it’s hard to do them justice in a
small segment like this. Rest assured that once you fully understand type
classes, then you are a good way toward mastery of Haskell.

Resources

The best place to start learning Haskell is an online book called Learn You a

the paces of Haskell in an easy and entertaining way.

There are several books covering Haskell, all of them approaching from
slightly different angles. Many of them are focused on using Haskell from a
math or computer science perspective. If you want to learn Haskell for general-
purpose programming, the best book is probably Real World Haskell [OGS08]
by Bryan O’Sullivan, Don Stewart, and John Goerzen. It’'s available online at
http://book.realworldhaskell.org/read.

Of all the languages in this essay, I think Io is my absolute favorite. It is a
very small and powerful language. The core model is extremely regular and
very simple, but it gives rise to many strange and wonderful features.

Io is a pure object-oriented programming language, where pure simply means
that everything in Io is an object. No exceptions. Everything that you touch
or work with or that the implementation uses is an object that you can reach
in and get hold of. In comparison with Java, C#, Smalltalk, and many other
object-oriented languages, Io does not use classes. Instead, it uses something
called prototype-based object orientation. The idea is that you create a new

« Click HERE to purchase this book now. discuss

http://learnyouahaskell.com
http://book.realworldhaskell.org/read
http://pragprog.com/titles/twa2
http://forums.pragprog.com/forums/twa2

*10

object from an existing one. You make changes directly to the object and then
use that as a basis for anything else.

Traditional object-oriented languages have two different concepts: classes
and objects. In most pure languages, a class is a kind of object. But there is
a fundamental difference between them, namely, that classes can hold
behavior while objects can’t. In Io, methods are objects, just like anything
else, and methods can be added to any object. This programming model makes
it possible to model things very differently from the way class-based languages
require you to work. An additional advantage of prototype-based languages
is that they can emulate class-based languages quite well. So, if you want to
work with a more class-based model, you are free to do so.

Io is a small language, but it still supports a large chunk of functionality. It
has some very nice concurrency features based on coroutines. Using Io actors,
it’s extremely easy to build robust and scalable concurrent programs.

Another aspect of Io being pure is that the elements that are used to represent
Io code are available as first-class objects. This means you can create new
code at runtime, you can modify existing code, and you can introspect on
existing code. This makes it possible to create extraordinarily powerful
metaprogramming programs.

In Io, you define a method just like you assign any other value. You create
the method and assign it to a name. The first time you assign a name, you
need to use :=, but after that, you can use =. Our “Hello, World” example
looks like this:

MostinterestingLanguages/io/hello.io
hello := method(n,
("Hello " .. n) println)

hello("0la")
hello("Stella")

We concatenate strings using the .. operator and print something by asking
it to print itself. The output is highly unsurprising.
$ io hello.io

Hello Ola
Hello Stella

Io has cooperative multitasking using both actors and futures. Any object in
Io can be used as an actor by calling asyncSend() to it, with the name of the
method to call. We do have to explicitly call yield to make sure all the code
gets to run.

« Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/twa2/code/MostInterestingLanguages/io/hello.io
http://pragprog.com/titles/twa2
http://forums.pragprog.com/forums/twa2

MostinterestingLanguages/io/actors.io
tl := Object clone do(
test := method(
for(n, 1, 5,
n print
yield))
)

t2 := t1 clone
t1l asyncSend(test)
t2 asyncSend(test)

10 repeat(yield)
"" println

t3 := Object clone do(
test := method(
"called" println
wait(1)
"after" println
42))

result := t3 futureSend(test)
"we want the result now" println

result println

e 1

The first thing this code does is to create a new object called t1 with a test()
method that prints the numbers from one to five, yielding in between. We
then clone that object into another object and call asyncSend(test)() on both of

them, and finally we yield in the main thread ten times.

The second section creates a new object with another test() method that will
first print something and then wait for one second, print something else, and
then return a value. We can use this object as a transparent future by calling
futureSend(test)() to it. The result of that call won’t be evaluated until we actually
have to use the value to print it, on the last line. This functionality is quite
similar to the way Haskell handles lazy values, but we have to explicitly create

the future to make this happen in Io.

When running, we get this output:

$ 1o actors.io
1122334455

we want the result now
called

after

42

« Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/twa2/code/MostInterestingLanguages/io/actors.io
http://pragprog.com/titles/twa2
http://forums.pragprog.com/forums/twa2

*12

You can see the cooperative nature of the actors in how they print their values
between each other. You might also notice that the output from the method
we called as a future doesn’t get called until the last moment.

Another aspect of Io that is very powerful is its support for reflection and
metaprogramming; basically, anything is accessible to look at or change. All
code in lo is accessible at runtime, represented in the form of messages. You
can do many useful things with them, including creating advanced macro
facilities. This small example shows you a bit of the power of this approach,
even though the specific example might not be that compelling:

MostinterestingLanguages/io/meta.io
add := method(n,
n + 10)

add(40) println

getSlot("add") println

getSlot("add") message println
getSlot("add") message next println
getSlot("add") message next setName("-")

add(40) println

First, this code creates a method to add ten to any argument. We call it to
see that it works, and then we use getSlot() to get access to the method object
without actually evaluating it. We print it and then get the message object
inside of it and print that. Messages are chained so that after evaluating one
message, lo will follow the next pointer to figure out what to do next. So, we
print the next pointer and then change the name of the next message. Finally,
we try to add forty again. Basically, this code is changing the implementation
of the add() method dynamically, at runtime.

And when we run it, we can see that it works.

$ io meta.io
50

meta.io:2
method(n,

n + 10
)
n +(10)
+(10)
30

Io is extremely malleable. Almost everything is accessible and changeable. It
is a very powerful language, and it’s powerful by having a very small surface

« Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/twa2/code/MostInterestingLanguages/io/meta.io
http://pragprog.com/titles/twa2
http://forums.pragprog.com/forums/twa2

*13

area. It blew my mind when I first learned it, and it continues to blow my
mind on a regular basis.

Resources

Io doesn’t have any books written about it, but the introduction guide at
guage. After you've worked through it you should be able to look through
the reference documentation and understand what’s going on. Since Io is also
very introspective, you can usually find out what slots an object has by just
asking for it.

Steve Dekorte has several talks online about Io, and the book Seven Languages
in Seven Weeks by Bruce Tate also has a chapter about lo.

« Click HERE to purchase this book now. discuss

http://www.iolanguage.com/scm/io/docs/IoGuide.html
http://pragprog.com/titles/twa2
http://forums.pragprog.com/forums/twa2

