
Extracted from:

From Objects to Functions
Build Your Software Faster and Safer

with Functional Programming and Kotlin

This PDF file contains pages extracted from From Objects to Functions, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2023 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas

http://www.pragprog.com

From Objects to Functions
Build Your Software Faster and Safer

with Functional Programming and Kotlin

Uberto Barbini

The Pragmatic Bookshelf
Dallas, Texas

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

For our complete catalog of hands-on, practical, and Pragmatic content for software devel-
opers, please visit https://pragprog.com.

The team that produced this book includes:

CEO: Dave Rankin
COO: Janet Furlow
Managing Editor: Tammy Coron
Development Editor: Adaobi Obi Tulton
Copy Editor: Karen Galle
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics
Founders: Andy Hunt and Dave Thomas

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2023 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-845-1
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—September 2023

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Accessing the Database with Monads
It’s now time to put the monads to work on the database library we started
before. Using the ContextReader we wrote in the previous chapter, we can now
combine the read and write operations in the same transaction:

val listUpdater = readRow("myRowId")
.transform { r-> r.copy(active = false) }
.bind { r -> writeRow(r) }❶

runInTransaction(listUpdater).expectSuccess()❷

❶ With the bind method, we’re able to make the writeRow call compile and
work correctly without using a non-local return.

❷ Until we run the ContextReader in a transaction, ContextReader is only main-
taining a record of the operations we intend to carry out on the database,
without performing them. All the actual database calls happen in this
line.

Now that we have the functions to access the database, and we have a way
to read and write from it safely and in a functional-friendly way, we need to
put all this together.

First, we have to finish implementing the readRow and writeRow functions, using
a ContextReader working with the transaction:

typealias TxReader<T> = ContextReader<Transaction, T>❶

fun readRow(id: String): TxReader<ToDoListProjectionRow> = TxReader { tx ->❷
toDoListProjectionTable.selectWhere(tx, toDoListProjectionTable.id eq id)❸

.map { it[toDoListProjectionTable.row_data] }

.single()❹
}

fun writeRow(row: ToDoListProjectionRow): TxReader<Unit> = TxReader { tx ->❺
toDoListProjectionTable.insertInto(tx) { newRow ->❻

newRow[id] = row.id.toRowId()
newRow[row_data] = row

}
}

❶ We start by defining a type alias for our convenience.

❷ We wrap the result of readRow inside a transaction reader.

❸ Then, we select all rows from the projection table where the row ID is
equal to requested ID.

❹ Finally, we check that the query must return a single row.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/uboop
http://forums.pragprog.com/forums/uboop

❺ We wrap writeRow inside a reader in the same way.

❻ We insert a new row on the projection table using the transaction from
the reader.

To complete our task, we need to implement the ContextProvider for the transac-
tion. The goal here is to control the way transactions are used by the database,
so that we roll them back in case of errors, and we always close the database
connection. We also want to decide the isolation level to use to run the reader
case by case:

data class TransactionProvider(
private val dataSource: DataSource,
val isolationLevel: TransactionIsolationLevel,
val maxAttempts: Int = 10): ContextProvider<Transaction> {

override fun <T> tryRun(
reader: ContextReader<Transaction, T>): Outcome<ContextError, T> =

inTopLevelTransaction(❶
db = Database.connect(dataSource),❷
transactionIsolation = isolationLevel.jdbcLevel,
repetitionAttempts = maxAttempts) {

addLogger(StdOutSqlLogger)❸

try {
reader.runWith(this).asSuccess()❹

} catch (t: Throwable) {
rollback()❺
TransactionError("Transaction rolled back: ${t.message}", t)

.asFailure()
}

}
}

❶ inTopLevelTransaction from Exposed does exactly what we need here.

❷ We pass the database connection, the isolation level, and the max attempts
parameters from the constructor.

❸ Exposed will log out all the SQL commands to the console.

❹ We run our reader inside a try...catch block. Note that runWith is a field
storing a function, not a method of the ContextReader.

❺ In case of exceptions, we’ll rollback the transaction.

We can now successfully run the full test on the projection row with actual
code that can run on the database:

class TxContextReaderTest {

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/uboop
http://forums.pragprog.com/forums/uboop

@Test
fun `write and read from a table`() {

val user = randomUser()
val expectedList = randomToDoList()
val listId = ToDoListId.mint()
val row = ToDoListProjectionRow(listId, user, true, expectedList)

val listReader: TxReader<ToDoList> =
writeRow(row)

.bind { readRow(listId.toRowId()) }

.transform { row -> row.list }

val list = transactionContextForTest().tryRun(listReader)
.expectSuccess()

expectThat(list).isEqualTo(expectedList)
}

}

We need to start the PostgreSQL Docker container or another database
instance before running the tests, otherwise, they’ll fail.

If everything has been set up correctly, we can now successfully run our test
and see the generated SQL commands in the console, as in this figure:

EventStreamer with ContextReader
With all the necessary components in position, we’re now able to run our
event store in a database instead of relying on in-memory maps. What’s more,
our persistence framework has been designed in a manner that allows for its
operation in memory, with a database, or with alternative persistence solu-
tions, provided they can be incorporated within a ContextReader.

In other words, we defined an algebra of data and functions to manage the
persistence of our system using functional effects.

• Click HERE to purchase this book now. discuss

Accessing the Database with Monads • 7

http://pragprog.com/titles/uboop
http://forums.pragprog.com/forums/uboop

Let’s briefly recap where we are. Every domain operation that needs some
kind of persistence should return a ContextReader. We can then combine them,
and once we assemble enough pieces to complete a task—something that
should atomically work or fail—we can run it in a ContextProvider to obtain the
final result or a detailed error.

All the domain logic should ignore the actual context that will be used, because
it will be something injected from an outside adapter (see Separating the
Domain from the Infrastructure, on page ?).

Let’s look again at our EventStreamer interface. Its role is to read and write events
to the repository. It shouldn’t know about entity and the rest of the model:

interface EventStreamer<E : EntityEvent, NK: Any> {
fun fetchByEntity(entityId: EntityId): List<E>?
fun fetchAfter(eventSeq: EventSeq): Sequence<StoredEvent<E>>
fun retrieveIdFromNaturalKey(key: NK): EntityId?
fun store(newEvents: Iterable<E>): List<StoredEvent<E>>

}

Typically, each entity has a natural key that should be unique, like the com-
bination user and list name in Zettai. A good practical consideration is to add
a method to retrieve events using the natural key from our database. We
could use projections for this, but it’s faster and safer to directly query the
events.

Joe asks:

Why Is Using a Projection Not Safe?
The problem is that the projections are created by observing the events created by
the command handler. So, there is always a risk that they aren’t completely up-to-
date.

This is called eventual consistence, and it’s usually not a problem for the read model,
but it can be problematic for the event store. Depending on the domain, the risk can
be quite small or not of much consequence. But in general, it’s better to avoid having
the write model depend on projections.

It’s now time we put into practice what we learned about monads! We need
to change the interface to return ContextReader, also making the EventStreamer
generic over the context:

interface EventStreamer<CTX, E : EntityEvent, NK : Any> {
fun fetchByEntity(entityId: EntityId): ContextReader<CTX, List<E>>
fun fetchAfter(eventSeq: EventSeq): ContextReader<CTX, List<StoredEvent<E>>>
fun retrieveIdFromNaturalKey(key: NK): ContextReader<CTX, EntityId?>

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/uboop
http://forums.pragprog.com/forums/uboop

fun store(newEvents: Iterable<E>): ContextReader<CTX, List<StoredEvent<E>>>
}

Rewrite the In-Memory Event Streamer
Rather than writing a new database event streamer for the database from
scratch, it’s preferable to split the work into two parts: first, we convert the
current streamer to use the ContextReader operating with a list of events in
memory, and second, we can migrate it to an external database.

By proceeding in this way, we can validate each step separately and minimize
the potential for errors.

For this we need to move the event lists from the in-memory event streamer
to the ContextProvider for in-memory events:

typealias ToDoListInMemoryRef = AtomicReference<List<ToDoListStoredEvent>>

typealias InMemoryEventsReader<T> = ContextReader<ToDoListInMemoryRef, T>❶

class InMemoryEventsProvider() : ContextProvider<ToDoListInMemoryRef> {

val events = AtomicReference<List<ToDoListStoredEvent>>(listOf())❷

override fun <T> tryRun(reader: InMemoryEventsReader<T>) =
try {

reader.runWith(events).asSuccess()❸
} catch (e: Exception) {

ToDoListEventsError("Operation failed: ${e.message}", e)
.asFailure()❹

}
}

❶ First, we define the alias for the in-memory events reader.

❷ The list for events is now in the in-memory provider; it will be shared to
all the readers.

❸ Here, we run the reader inside a try...catch block as inside the transaction
provider. In this way, we’re sure that no exception can leak outside.

❹ In case of exception, we return a failure with the exception details.

We also need to adapt the EventStreamerInMemory using the list from the context
instead of the private field. Let’s just look at the store method since the rest
are quite similar:

class EventStreamerInMemory : ToDoListEventStreamer<ToDoListInMemoryRef> {

override fun store(newEvents: Iterable<ToDoListEvent>) =
InMemoryEventsReader { events ->

newEvents.toSavedEvents(events.get().size.toLong())

• Click HERE to purchase this book now. discuss

Accessing the Database with Monads • 9

http://pragprog.com/titles/uboop
http://forums.pragprog.com/forums/uboop

.also { ne -> events.updateAndGet { it + ne } }
}

//... similar changes to rest of the methods

}

• 10

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/uboop
http://forums.pragprog.com/forums/uboop

