
Extracted from:

Pragmatic Unit Testing
in C# with NUnit, Second Edition

This PDF file contains pages extracted from Pragmatic Unit Testing, one of

the Pragmatic Starter Kit series of books for project teams. For more

information, visit http://www.pragmaticprogrammer.com/starter_kit.

Note: This extract contains some colored text (particularly in code listing).

This is available only in online versions of the books. The printed versions

are black and white. Pagination might vary between the online and printer

versions; the content is otherwise identical.

Copyright c© 2006 The Pragmatic Programmers, LLC. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any

form, or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the

prior consent of the publisher.

http://www.pragmaticprogrammer.com/starter_kit

Chapter 1

Introduction

Lots of different kinds of testing can and should be performed

on a software project. Some of this testing requires exten-

sive involvement from the end users; other forms may require

teams of dedicated quality assurance personnel or other ex-

pensive resources.

But that’s not what we’re going to talk about here.

Instead, we’re going to talk about unit testing: an essential,

if often misunderstood, part of project and personal success.

Unit testing is a relatively inexpensive, easy way to produce

better code faster.

Unit testing is the practice of using small bits of code to exer-

cise the code you’ve written. In this book, we’ll be using the

NUnit testing framework to help manage and run these little

bits of code.

Many organizations have grand intentions when it comes to

testing, but they tend to test only toward the end of a project,

and then the mounting schedule pressures often cause test-

ing to be curtailed or eliminated entirely.

Everyone agrees that more testing is needed, in the same way

that everyone agrees you should eat your broccoli, stop smok-

ing, get plenty of rest, and exercise regularly. That doesn’t

mean that any of us actually do these things, however.

In fact, many programmers even think testing is a nuisance—

an unwanted bother that merely distracts from the real busi-

ness at hand, which is cutting code.

CODING WITH CONFIDENCE 2

But unit testing can be much more than a nuisance—

although you might consider it to be in the broccoli family,

we’re here to tell you it’s more like an awesome sauce that

makes everything taste better. Unit testing isn’t designed to

achieve some corporate quality initiative; it’s not a tool for the

end users, managers, or team leads. Unit testing is done by

programmers, for programmers. It’s here for our benefit alone

and can make our lives easier.

Put simply, unit testing can mean the difference between your

success and your failure. Consider the following short story.

1.1 Coding with Confidence

Once upon a time—maybe it was last Tuesday—there were

two developers, Pat and Dale. They were both up against

the same deadline, which was rapidly approaching. Pat was

pumping out code pretty fast. . . developing class after class

and method after method and stopping every so often to make

sure that the code would compile.

Pat kept up this pace right until the night before the deadline,

when it would be time to demonstrate all this code. Pat ran

the top-level program but didn’t get any output at all. Nothing.

It was time to step through using the debugger. Hmm. That

can’t be right, thought Pat. There’s no way that this variable

could be zero by now. So, Pat stepped back through the code,

trying to track down the history of this elusive problem.

It was getting late now. Pat found and fixed the bug, but Pat

found several more during the process. And still, there was

no output at all. Pat couldn’t understand why. It just didn’t

make any sense.

Dale, meanwhile, wasn’t churning out code nearly as fast.

Dale would write a new routine and a short test to go along

with it. It was nothing fancy. . . just a simple test to see

whether the routine just written actually did what it was sup-

posed to do. It took a little longer to think of the test and

write it, but Dale refused to move on until the new routine

could prove itself. Only then would Dale move up and write

the next routine that called it, and so on.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/utc2

WHAT IS UNIT TESTING? 3

Dale rarely used the debugger, if ever, and was somewhat puz-

zled at the picture of Pat, head in hands, muttering various

evil-sounding curses at the computer with wide, bloodshot

eyes staring at all those debugger windows.

The deadline came and went, and Pat didn’t make it. Dale’s

code was integrated with the other components and ran al-

most perfectly.1 One little glitch came up, but it was pretty

easy to see where the problem was. Dale fixed the bug in just

a few minutes.

Now comes the punch line: Dale and Pat are the same age and

have roughly the same coding skills and mental prowess. The

only difference is that Dale believes strongly in unit testing

and tests every newly crafted method before relying on it or

using it from other code. Pat does not. Pat “knows” that the

code should work as written and doesn’t bother to try it until

most of the code has been completed. But by then it’s too late,

and it becomes very hard to try to locate the source of bugs or

even determine what’s working and what’s not.

1.2 What Is Unit Testing?

A unit test is a piece of code written by a developer who ex-

ercises a very small, specific area of functionality in the code

being tested. Usually a unit test exercises some particular

method in a particular context. For example, we might add

a large value to a sorted list and then confirm this value ap-

pears at the end of the list. Or we might delete a pattern of

characters from a string and then confirm that they are gone.

Unit tests are performed to prove that a piece of code does

what the developer thinks it should do.

The question remains open as to whether that’s the right thing

to do according to the customer or end user; that’s what ac-

ceptance testing is for. We’re not really concerned with formal

validation and verification or correctness just yet. We’re really

not even interested in performance testing at this point. All we

1Thanks to the fact Dale had been continuously integrating via the unit

tests all along.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/utc2

WHY SHOULD WE BOTHER WITH UNIT TESTING? 4

want to do is prove that code does what we intended,2 so we

want to test very small, very isolated pieces of functionality.

By building up confidence that the individual pieces work as

expected, we can then proceed to assemble and test working

systems.

After all, if we aren’t sure the code is doing what we think,

then any other forms of testing may just be a waste of time.

We still need other forms of testing and perhaps much more

formal testing depending on our environment. But testing,

as with charity, begins at home.

1.3 Why Should We Bother with Unit Testing?

Unit testing will make our lives easier.

Please say that with us, out loud. Unit testing will make our

lives easier. That’s why we’re here. It will make our designs

better and drastically reduce the amount of time we spend de-

bugging. We like to write code, and time wasted on debugging

is time spent not writing code.

In our earlier tale, Pat got into trouble by assuming that

lower-level code worked and then using that in higher-level

code, which was in turn used by more code, and so on. With-

out legitimate confidence in any of the code, Pat was building

a “house of cards” of assumptions—one little nudge at the

bottom, and the whole thing falls down.

When basic, low-level code isn’t reliable, the requisite fixes

don’t stay at the low level. We fix the low-level problem, but

that impacts code at higher levels, which then needs fixing,

and so on. Fixes begin to ripple throughout the code, getting

larger and more complicated as they go. The house of cards

falls down, taking the project with it.

Pat keeps saying things like “That’s impossible” or “I don’t un-

derstand how that could happen.” If we find ourselves think-

ing these sorts of thoughts, then it’s usually a good indication

that we don’t have enough confidence in our code—we don’t

know for sure what’s working and what’s not.

2You also need to ensure you’re intending the right thing; see [SH06].

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/utc2

WHAT DO WE WANT TO ACCOMPLISH? 5

To gain the kind of code confidence that Dale has, you’ll need

to ask the code itself what it is doing and check that the result

is what we expect it to be. Dale’s confidence doesn’t come

from the fact he knows the code forward and backward at all

times; it comes from the fact that he has a safety net of tests

that verify things work the way he thought they should.

That simple idea describes the heart of unit testing—the single

most effective technique to better coding.

1.4 What Do We Want to Accomplish?

It’s easy to get carried away with unit testing because the con-

fidence it instills makes coding so much fun, but at the end

of the day we still need to produce production code for cus-

tomers and end users, so let’s be clear about our goals for

unit testing. We want to do this to make our lives—and the

lives of your teammates—easier.

And of course, executable documentation in the form of

clearly written unit test code has the benefit of being self-

verifiably correct without much effort beyond writing it the

first time. Unlike traditional paper-based documentation, it

won’t drift away from the code (unless, of course, we stop

running the tests or let them continuously fail).

Does It Do What We Want?

Fundamentally, we want to answer this question: “Is the code

fulfilling our intent?” The code might well be doing the wrong

thing as far as the requirements are concerned, but that’s a

separate exercise. We want the code to prove to us that it’s

doing exactly what we think it should.

Does It Do What We Want All of the Time?

Many developers who claim they do testing only ever write one

test. That’s the test that goes right down the middle, taking

the one well-known “happy path” through the code where

everything goes perfectly.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/utc2

WHAT DO WE WANT TO ACCOMPLISH? 6

But of course, life is rarely that cooperative, and things don’t

always go perfectly: exceptions get thrown, disks get full,

network lines drop, buffers overflow, and—heaven forbid—we

write bugs. That’s the “engineering” part of software develop-

ment. Civil engineers must consider the load on bridges, the

effects of high winds, the effects of earthquakes, the effects of

floods, and so on. Electrical engineers plan on frequency drift,

voltage spikes, noise, and even problems with parts availabil-

ity.

We don’t test a bridge by driving a single car over it right down

the middle lane on a clear, calm day. That’s not sufficient, and

the fact we succeeded is just a coincidence.3 Beyond ensuring

that the code does what we want, we need to ensure that the

code does what we want all of the time, even when the winds

are high, the parameters are suspect, the disk is full, and the

network is sluggish.

Can We Depend on It?

Code that we can’t depend on is not particularly useful.

Worse, code that we think we can depend on (but turns out to

have bugs) can cost us a lot of time to track down and debug.

Few projects can afford to waste time, so we want to avoid

that “one step forward, two steps back” approach at all costs

and instead stick to moving forward.

No one writes perfect code, and that’s OK—as long as we know

where the problems exist. Many of the most spectacular soft-

ware failures that strand broken spacecraft on distant planets

or blow them up in midflight could have been avoided sim-

ply by knowing the limitations of the software. For instance,

the Arianne 5 rocket software reused a library from an older

rocket that simply couldn’t handle the larger numbers of the

higher-flying new rocket.4 It exploded 40 seconds into flight,

taking 500 million dollars with it into oblivion.

3See Programming by Coincidence in [HT00].
4For aviation geeks: The numeric overflow was because of a much larger

“horizontal bias,” which was in turn because of a different trajectory that

increased the horizontal velocity of the rocket.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/utc2

HOW DO WE DO UNIT TESTING? 7

We want to be able to depend on the code we write and know

for certain both its strengths and its limitations.

For example, suppose we’ve written a routine to reverse a list

of numbers. As part of testing, we give it an empty list—

and the code blows up. The requirements don’t say we have

to accept an empty list, so maybe we simply document that

in the comment block for the method and throw an excep-

tion if the routine is called with an empty list. Now we know

the limitations of code right away, instead of finding out the

hard way (often somewhere inconvenient, such as in the up-

per atmosphere).

Does It Document Our Intent?

One nice side effect of unit testing is that it helps us commu-

nicate the code’s intended use. In effect, a unit test behaves as

executable documentation, showing how we expect the code

to behave under the various conditions we’ve considered.

Current and future team members can look at the tests for

examples of how to use our code. If someone comes across

a test case we haven’t considered, we’ll be alerted quickly to

that fact.

1.5 How Do We Do Unit Testing?

Unit testing is basically an easy practice to adopt; we can

follow some guidelines and common steps to make it easier

and more effective.

The first step is to decide how to test the method in question—

before writing the code itself. With at least a rough idea of how

to proceed, we can then write the test code itself, either before

or concurrently with the implementation code. If we’re writing

unit tests for existing code, that’s fine too, but we may find we

need to refactor5 it more often than with new code in order to

make things testable.

5Refactoring is the process of making small, deterministic changes to the

code to reduce coupling and eliminate duplication, without changing the be-

havior of the code [FBB+99].

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/utc2

HOW DO WE DO UNIT TESTING? 8

Joe Asks. . .

What’s Collateral Damage?

Collateral damage is what happens when a new fea-
ture or a bug fix in one part of the system causes a
bug (damage) to another, possibly unrelated part of
the system. It’s an insidious problem that, if allowed to
continue, can quickly render the entire system broken
beyond anyone’s ability to easily fix.

We sometimes call this the “Whac-a-Mole effect.” In
the carnival game of Whac-a-Mole, the player must
strike the mechanical mole heads that pop up on the
playing field. But they don’t keep their heads up for
long; as soon as you move to strike one mole, it re-
treats, and another mole pops up on the opposite
side of the field. The moles pop up and down fast
enough that it can be very frustrating to try to con-
nect with one and score. As a result, players gener-
ally flail helplessly at the field as the moles continue to
pop up where you least expect them.

Widespread collateral damage to a code base can
have a similar effect. The root of the problem is usually
some kind of inappropriate coupling, coming in forms
such as global state via static variables or false single-
tons, circular object or class dependencies, and so
on. Eliminate them early to avoid implicit dependen-
cies on this abhorrent practice in other parts of the
code.

Next, we run the test itself and probably all the other tests

in that part of the system, or even the entire system’s tests if

that can be done relatively quickly. It’s important that all the

tests pass, not just the new one. This kind of basic regression

testing helps us avoid any collateral damage as well as any

immediate, local bugs.

Every test needs to determine whether it passed—it doesn’t

count if you or some other hapless human has to read

through a pile of output and decide whether the code worked.

If you can eyeball it, you can use a code assertion to test it.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/utc2

EXCUSES FOR NOT TESTING 9

You want to get into the habit of looking at the test results

and telling at a glance whether it all worked. We’ll talk more

about that when we go over the specifics of using unit testing

frameworks.

1.6 Excuses for Not Testing

Despite our rational and impassioned pleas, some developers

will still nod their heads and agree with the need for unit test-

ing but will steadfastly assure us that they couldn’t possibly

do this sort of testing for one of a variety of reasons. Here are

some of the most popular excuses we’ve heard, along with our

rebuttals.

“It takes too much time to write the tests.” This is the

number-one complaint voiced by most newcomers to unit

testing. It’s untrue, of course, but to see why, we need to

talk about where we spend our time when developing code.

Many people view testing of any sort as something that hap-

pens toward the end of a project. And yes, if we wait to begin

unit testing until then, it will definitely take longer than it

would otherwise. In fact, we may not finish the job until the

heat death of the universe itself.

At least it will feel that way. It’s like trying to clear a couple of

acres of land with a lawn mower. If we start early when there’s

just a field of grasses, the job is easy. If we wait until later,

when the field contains thick, gnarled trees and dense, tan-

gled undergrowth, then the job becomes impossibly difficult

by hand—we need bulldozers and lots of heavy equipment.

Instead of waiting until the end, it’s far cheaper in the long

run to adopt the “pay-as-you-go” model. By writing individual

tests with the code itself as we go along, there’s no crunch at

the end, and we experience fewer overall bugs because we are

generally always working with tested code. By taking a little

extra time all the time, we minimize the risk of needing a huge

amount of time at the end.

You see, the trade-off is not “test now” versus “test later.” It’s

linear work now versus exponential work and complexity try-

ing to fix and rework at the end.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/utc2

EXCUSES FOR NOT TESTING 10

P
ro

d
u

c
ti

v
it

y
Õ

P
ro

d
u

c
ti

v
it

y
Õ

Time Õ Time Õ

PAY-AS-YOU-GO SINGLE TEST PHASE

Figure 1.1: COMPARISON OF PAYING-AS-YOU-GO VERSUS HAV-

ING A SINGLE TESTING PHASE

Not only is the job larger and more complex, but now we have

to relearn the code we wrote some weeks or months ago. All

that extra work kills our productivity, as shown in Figure 1.1.

These productivity losses can easily doom a project or devel-

oper to being perpetually 90% done.

Notice that testing isn’t free. In the pay-as-you-go model,

the effort is not zero; it will cost you some amount of effort

(and time and money). But look at the frightening direction

the curve on the right takes over time—straight down. Our

productivity might even become negative. These productivity

losses can easily doom a project.

So if you think you don’t have time to write tests in addition to

the code you’re already writing, consider the following ques-

tions:

• How much time do you spend debugging code that you

or others have written?

• How much time do you spend reworking code that you

thought was working but turned out to have major, crip-

pling bugs?

• How much time do you spend isolating a reported bug to

its source?

For most people who work without unit tests, these numbers

add up fast and will continue to add up even faster over the

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/utc2

EXCUSES FOR NOT TESTING 11

life span of the project. Proper unit testing can dramatically

reduce these times, freeing up enough time so that we’ll have

the opportunity to write all the unit tests we want—and maybe

even some free time to spare.

“It takes too long to run the tests.” It shouldn’t. Most unit

tests should execute in the blink of an eye, so we should be

able to run hundreds or even thousands of them in a matter

of a few seconds. But sometimes that won’t be possible, and

we may end up with certain tests that simply take too long to

run conveniently all of the time.

In that case, we’ll want to separate the longer-running tests

from the short ones. NUnit has functionality that handles this

nicely, which we’ll talk about more later. Run the long tests

only in the automated build or manually at the beginning of

the day while catching up on email, and run the shorter tests

constantly at every significant change or before every commit

to the source repository.

“My legacy code is impossible to test.” Many people offer

the excuse that they can’t possibly do unit testing because

the existing, legacy code base is such a tangled mess that it’s

impossible to get into the middle of it and create an individual

test. Testing even a small part of the system might mean we

have to drag the entire system along for the ride, and making

any changes is a fragile, risky business.6

The problem isn’t with unit testing, of course; the problem is

with the poorly written legacy code. We’ll have to refactor—

incrementally redesign and adapt—the legacy code to untan-

gle the mess. Note that this doesn’t really qualify as making

changes just for the sake of testing. The real power of unit

tests is the design feedback that, when acted upon appropri-

ately, will lead to better object-oriented designs.

Coding in a culture of fear because we are paralyzed by legacy

code is not productive; it’s bad for the project, bad for the

programmers, and ultimately bad for business. Introducing

unit testing helps break that paralysis.
6See [Fea04] for details on working effectively with legacy code.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/utc2

EXCUSES FOR NOT TESTING 12

“It’s not my job to test my code.” Now here’s an interest-

ing excuse. Pray tell, what is our job exactly? Presumably

our job, at least in part, is to create working, maintainable

code. If we are throwing code over the wall to some testing

group without any assurance that it’s working, then we’re not

doing your job. It’s not polite to expect others to clean up our

own messes, and in extreme cases submitting large volumes

of buggy code can become a “career-limiting” move.

On the other hand, if the testers or QA group find it difficult

to find fault with our code, our reputation will grow rapidly—

along with our job security!

“I don’t really know how the code is supposed to behave,

so I can’t test it.” If we truly don’t know how the code is

supposed to behave, then maybe this isn’t the time to be writ-

ing it.7 Maybe a prototype would be more appropriate as a

first step to help clarify the requirements.

If we don’t know what the code is supposed to do, then how

will we know that it does it?

“But it compiles!” OK, no one really comes out with this as

an excuse, at least not out loud. But it’s easy to get lulled

into thinking that a successful compile is somehow a mark of

approval and that we’ve passed some threshold of goodness.

But the compiler’s blessing is a pretty shallow compliment. It

can verify that your syntax is correct, but it can’t figure out

what your code should do. For example, the C# compiler can

easily determine that this line is wrong:

statuc void Main() {

It’s just a simple typo and should be static, not statuc.

That’s the easy part. But now suppose we’ve written the fol-

lowing:

public void Addit(Object anObject) {

List myList = new List();

myList.Add(anObject);

myList.Add(anObject);

// more code...

} M
a

in
.c

s

7See [HT00] or [SH06] for more on learning requirements.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/utc2

EXCUSES FOR NOT TESTING 13

Did we really mean to add the same object to the same list

twice? Maybe, maybe not. The compiler can’t tell the differ-

ence; only we know what we intended the code to do.8

“I’m being paid to write code, not to write tests.” By that

same logic, we’re not being paid to spend all day in the de-

bugger either. Presumably we are being paid to write working

code, and unit tests are merely a tool toward that end, in the

same fashion as an editor, an IDE, or the compiler.

“I feel guilty about putting testers and QA staff out of

work.” Don’t worry, we won’t. Remember we’re talking only

about unit testing here. It’s the barest-bones, lowest-level test-

ing that’s designed for us, the programmers. There’s plenty of

other work to be done in the way of functional testing, accep-

tance testing, performance and environmental testing, valida-

tion and verification, formal analysis, and so on.

“My company won’t let me run unit tests on the live

system.” Whoa! We’re talking about developer unit testing

here. Although you might be able to run those same tests in

other contexts (on the live production system, for instance),

they are no longer unit tests. Run your unit tests on your ma-

chine using your own database or using a mock object (see

Chapter 6).

If the QA department or other testing staff wants to run these

tests in a production or staging environment, you might be

able to coordinate the technical details with that department,

but realize that they are no longer unit tests in that context.

“Yeah, we unit test already.” Unit testing is one of the

practices that is typically marked by effusive and consistent

enthusiasm. If the team isn’t enthusiastic, maybe they aren’t

doing it right. See whether you recognize any of the following

warning signs:

• Unit tests are in fact integration tests, requiring lots

of setup and test code, taking a long time to run, and

8Automated testing tools that generate their own tests based on your ex-

isting code fall into this same trap—they can use only what we wrote, not

what we meant.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/utc2

ROAD MAP 14

accessing resources such as databases and services on

the network.

• Unit tests are scarce and test only one path, don’t test

for exceptional conditions (no disk space and so on), and

don’t really express what the code is supposed to do.

• Unit tests are not maintained; tests are ignored (or

deleted) forever if they start failing, or no new unit tests

are added, even when bugs are encountered that illus-

trate holes in the coverage of the unit tests.

If you find any of these symptoms, then your team is not unit

testing effectively or optimally. Have everyone read up on unit

testing again, go to some training, or try pair programming to

get a fresh perspective.

1.7 Road Map

Chapter 2, Your First Unit Tests, contains an overview of test

writing. From there we’ll take a look at the specifics of writing

tests in NUnit in Chapter 3. We’ll then spend a few chapters

on how you come up with what things need testing and how

to test them.

Next we’ll look at the important properties of good tests in

Chapter 7, followed by what we need to do to use testing ef-

fectively in projects in Chapter 8. This chapter also discusses

how to handle existing projects with legacy code.

We’ll then talk about how testing can influence an applica-

tion’s design (for the better) in Chapter 9, Design Issues. We’ll

then wrap up with an overview of GUI testing in Chapter 10.

The appendixes contain additional useful information: a look

at common unit testing problems, extending NUnit itself, a

note on installing NUnit, and a list of resources including the

bibliography. We finish off with a summary of the book’s tips

and suggestions.

So, sit back, relax, and welcome to the world of better coding.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/utc2

A Pragmatic Career
Welcome to the Pragmatic Community. We hope you’ve enjoyed this title.

If you’ve enjoyed this book by Johanna Rothman, and want to advance

your management career, you’ll be interested in seeing what happens Be-

hind Closed Doors. And see how you can lead you team to success by using

Agile Retrospectives.

Behind Closed Doors
You can learn to be a better manager—even a great

manager—with this guide. You’ll find powerful tips

covering:

• Delegating effectively • Using feedback and

goal-setting • Developing influence • Handling

one-on-one meetings • Coaching and mentoring

• Deciding what work to do-and what not to do

• . . . and more!

Behind Closed Doors Secrets of Great

Management

Johanna Rothman and Esther Derby

(192 pages) ISBN: 0-9766940-2-6. $24.95

http://pragmaticprogrammer.com/titles/rdbcd

Agile Retrospectives
Mine the experience of your software development

team continually throughout the life of the project.

Rather than waiting until the end of the project—as

with a traditional retrospective, when it’s too late to

help—agile retrospectives help you adjust to

change today.

The tools and recipes in this book will help you

uncover and solve hidden (and not-so-hidden)

problems with your technology, your methodology,

and those difficult “people issues” on your team.

Agile Retrospectives: Making Good Teams Great

Esther Derby and Diana Larsen

(170 pages) ISBN: 0-9776166-4-9. $29.95

http://pragmaticprogrammer.com/titles/dlret

http://pragmaticprogrammer.com/titles/rdbcd
http://pragmaticprogrammer.com/titles/dlret

Competitive Edge
Need to get software out the door? Then you want to see how to Ship It!

with less fuss and more features. And every developer can benefit from the

Practices of an Agile Developer.

Ship It!
Page after page of solid advice, all tried and tested

in the real world. This book offers a collection of

tips that show you what tools a successful team

has to use, and how to use them well. You’ll get

quick, easy-to-follow advice on modern techniques

and when they should be applied. You need this

book if: • You’re frustrated at lack of progress

on your project. • You want to make yourself and

your team more valuable. • You’ve looked at

methodologies such as Extreme Programming (XP)

and felt they were too, well, extreme. • You’ve

looked at the Rational Unified Process (RUP) or

CMM/I methods and cringed at the learning curve

and costs. • You need to get software out the

door without excuses

Ship It! A Practical Guide to Successful

Software Projects

Jared Richardson and Will Gwaltney

(200 pages) ISBN: 0-9745140-4-7. $29.95

http://pragmaticprogrammer.com/titles/prj

Practices of an Agile Developer
Agility is all about using feedback to respond to

change. Learn how to apply the principles of agility

throughout the software development process •

Establish and maintain an agile working

environment • Deliver what users really want •

Use personal agile techniques for better coding and

debugging • Use effective collaborative

techniques for better teamwork • Move to an agile

approach

Practices of an Agile Developer: Working in the

Real World

Venkat Subramaniam and Andy Hunt

(189 pages) ISBN: 0-9745140-8-X. $29.95

http://pragmaticprogrammer.com/titles/pad

http://pragmaticprogrammer.com/titles/prj
http://pragmaticprogrammer.com/titles/pad

Cutting Edge
Now that you’ve finished your project, are you sure that it’s ready for the real

world? Are you truly ready to Release It! in this crazy world?

Interested in Ruby on Rails, but don’t want to learn another framework from

scratch? You don’t have to! Rails for Java Programmersleverages you and

your team’s knowledge of Java to quickly learn the Rails environment.

Release It!
Whether it’s in Java, .NET, or Ruby on Rails,

getting your application ready to ship is only half

the battle. Did you design your system to survive a

sudden rush of visitors from Digg or Slashdot? Or

an influx of real world customers from 100 different

countries? Are you ready for a world filled with

flakey networks, tangled databases, and impatient

users?

If you’re a developer and don’t want to be on call at

3AM for the rest of your life, this book will help.

Design and Deploy Production-Ready Software

Michael T. Nygard

(368 pages) ISBN: 0-9787392-1-3. $34.95

http://pragmaticprogrammer.com/titles/mnee

Rails for Java Developers
Enterprise Java developers already have most of

the skills needed to create Rails applications. They

just need a guide which shows how their Java

knowledge maps to the Rails world. That’s what

this book does. It covers: • The Ruby language

• Building MVC Applications • Unit and

Functional Testing • Security • Project

Automation • Configuration • Web Services

This book is the fast track for Java programmers

who are learning or evaluating Ruby on Rails.

Rails for Java Developers

Stuart Halloway and Justin Gehtland

(300 pages) ISBN: 0-9776166-9-X. $34.95

http://pragmaticprogrammer.com/titles/fr_r4j

http://pragmaticprogrammer.com/titles/mnee
http://pragmaticprogrammer.com/titles/fr_r4j

Facets of Ruby Series
If you’re serious about Ruby, you need the definitive reference to the lan-

guage. The Pickaxe: Programming Ruby: The Pragmatic Programmer’s Guide,

Second Edition. This is the definitive guide for all Ruby programmers. And

you’ll need a good text editor, too. On the Mac, we recommend TextMate.

Programming Ruby (The Pickaxe)
The Pickaxe book, named for the tool on the cover,

is the definitive reference to this highly-regarded

language. • Up-to-date and expanded for Ruby

version 1.8 • Complete documentation of all the

built-in classes, modules, and methods

• Complete descriptions of all ninety-eight standard

libraries • 200+ pages of new content in this

edition • Learn more about Ruby’s web tools, unit

testing, and programming philosophy

Programming Ruby: The Pragmatic

Programmer’s Guide, 2nd Edition

Dave Thomas with Chad Fowler and Andy Hunt

(864 pages) ISBN: 0-9745140-5-5. $44.95

http://pragmaticprogrammer.com/titles/ruby

TextMate
If you’re coding Ruby or Rails on a Mac, then you

owe it to yourself to get the TextMate editor. And,

once you’re using TextMate, you owe it to yourself

to pick up this book. It’s packed with information

which will help you automate all your editing tasks,

saving you time to concentrate on the important

stuff. Use snippets to insert boilerplate code and

refactorings to move stuff around. Learn how to

write your own extensions to customize it to the

way you work.

TextMate: Power Editing for the Mac

James Edward Gray II

(200 pages) ISBN: 0-9787392-3-X. $29.95

http://pragmaticprogrammer.com/titles/textmate

http://pragmaticprogrammer.com/titles/ruby
http://pragmaticprogrammer.com/titles/textmate

Pragmatic Starter Kit
Version control. Unit Testing. Project Automation. Three great titles, one

objective. To get you up to speed with the essentials for successful project

development. Keep your source under control, your bugs in check, and your

process repeatable with these three concise, readable books from The Prag-

matic Bookshelf.

Visit Us Online
Unit Testing in C# Home Page

http://pragmaticprogrammer.com/titles/utc2

Source code from this book, errata, and other resources. Come give us feed-

back, too!

Register for Updates

http://pragmaticprogrammer.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragmaticprogrammer.com/community

Read our weblogs, join our online discussions, participate in our mailing list,

interact with our wiki, and benefit from the experience of other Pragmatic

Programmers.

New and Noteworthy

http://pragmaticprogrammer.com/news

Check out the latest pragmatic developments in the news.

Buy the Book
If you liked this PDF, perhaps you’d like to have a paper

copy of the book. It’s available for purchase at our store:

http://pragmaticprogrammer.com/titles/utc2.

Contact Us
Phone Orders: 1-800-699-PROG (+1 919 847 3884)

Online Orders: www.pragmaticprogrammer.com/catalog

Customer Service: orders@pragmaticprogrammer.com

Non-English Versions: translations@pragmaticprogrammer.com

Pragmatic Teaching: academic@pragmaticprogrammer.com

Author Proposals: proposals@pragmaticprogrammer.com

http://pragmaticprogrammer.com/titles/utc2
http://pragmaticprogrammer.com/updates
http://pragmaticprogrammer.com/community
http://pragmaticprogrammer.com/news
http://pragmaticprogrammer.com/titles/utc2
www.pragmaticprogrammer.com/catalog

	About the Starter Kit
	Preface
	to1Introduction
	Coding with Confidence
	What Is Unit Testing?
	Why Should We Bother with Unit Testing?
	What Do We Want to Accomplish?
	How Do We Do Unit Testing?
	Excuses for Not Testing
	Road Map

	to2Your First Unit Tests
	Planning Tests
	Testing a Simple Method
	Running Tests with NUnit
	Running the Example
	More Tests

	to3Writing Tests in NUnit
	Structuring Unit Tests
	Classic Asserts
	Constraint-Based Asserts
	NUnit Framework
	NUnit Test Selection
	More NUnit Asserts
	NUnit Custom Asserts
	NUnit and Exceptions
	Temporarily Ignoring Tests

	to4What to Test: The Right BICEP
	Are the Results Right?
	Boundary Conditions
	Check Inverse Relationships
	Cross-Check Using Other Means
	Force Error Conditions
	Performance Characteristics

	to5CORRECT Boundary Conditions
	Conformance
	Ordering
	Range
	Reference
	Existence
	Cardinality
	Time
	Try It Yourself

	to6Using Mock Objects
	Stubs
	Fakes
	Mock Objects
	When Not to Mock

	to7Properties of Good Tests
	Automatic
	Thorough
	Repeatable
	Independent
	Professional
	Testing the Tests

	to8Testing on a Project
	Where to Put Test Code
	Where to Put NUnit
	Test Courtesy
	Test Frequency
	Tests and Legacy Code
	Tests and Code Reviews

	to9Design Issues
	Designing for Testability
	Refactoring for Testing
	Testing the Class Invariant
	Test-Driven Design
	Testing Invalid Parameters

	to10UI Testing
	Unit Testing WinForms
	Unit Testing Beyond Windows Forms
	Web UIs
	Programmer UIs
	Command-Line UIs
	GUI Testing Gotchas

	toAGotchas
	As Long As the Code Works
	Smoke Tests
	``Works on My Machine''
	Floating-Point Problems
	Tests Take Too Long
	Tests Keep Breaking
	Tests Fail on Some Machines
	Tests Pass in One Test Runner, Not the Other
	Thread State Issues
	C# 2.0--Specific Issues

	toBResources
	On the Web
	Bibliography

	toCSummary: Pragmatic Unit Testing
	toDAnswers to Exercises

