
Extracted from:

Pragmatic Unit Testing
in C# with NUnit, Second Edition

This PDF file contains pages extracted from Pragmatic Unit Testing, one of

the Pragmatic Starter Kit series of books for project teams. For more

information, visit http://www.pragmaticprogrammer.com/starter_kit.

Note: This extract contains some colored text (particularly in code listing).

This is available only in online versions of the books. The printed versions

are black and white. Pagination might vary between the online and printer

versions; the content is otherwise identical.

Copyright c© 2006 The Pragmatic Programmers, LLC. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any

form, or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the

prior consent of the publisher.

http://www.pragmaticprogrammer.com/starter_kit

Chapter 6

Using Mock Objects

The objective of unit testing is to exercise just one behav-

ior at a time, but what happens when the method contain-

ing that behavior depends on other things—hard-to-control

things such as the network, a database, or even specialized

hardware?

What if our code depends on other parts of the system—maybe

even many other parts of the system? If we’re not careful,

we might find ourselves writing tests that end up (directly or

indirectly) initializing nearly every system component just to

give the tests enough context to run. Not only is this time-

consuming, but it also introduces a ridiculous amount of cou-

pling into the testing process: someone changes an interface

or a database table, and suddenly the setup code for our poor

little unit test dies mysteriously. With this kind of coupling,

sometimes simply adding a new test can cause other tests to

fail. Even the best-intentioned developers will become dis-

couraged after this happens a few times, and they eventually

may abandon all testing. But there are techniques we can use

to help.

In movie and television production, crews will often use stand-

ins or doubles for the real actors. In particular, while the

crews are setting up the lights and camera angles, they’ll

use lighting doubles—inexpensive, unimportant people who

are about the same height and complexion as the expensive,

important actors lounging safely in their luxurious trailers.

CHAPTER 6. USING MOCK OBJECTS 93

The crew then tests their setup with the lighting doubles,

measuring the distance from the camera to the stand-in’s

nose and adjusting the lighting until there are no unwanted

shadows, and so on. The obedient stand-in just stands there

and doesn’t whine or complain about “lacking motivation” for

their character in this scene.

What we’re going to do in unit testing is similar to using light-

ing doubles in movies. Instead of testing against the real code

itself, we’ll use a cheap stand-in that is kind of close to the

real code, at least superficially, but will be easier to work with

for our nefarious unit testing purposes.

Fortunately, there’s a testing pattern that can help: mock ob-

jects. A mock object is simply a testing replacement for a

real-world object. A number of situations can come up where

mock objects can help us. Tim Mackinnon [MFC01] offers the

following list:

• The real object has nondeterministic behavior (it pro-

duces unpredictable results, like a stock market quote

feed or random number generator).

• The real object is difficult to set up, requiring a certain

file system, database, or network environment.

• The real object has behavior that is hard to trigger (for

example, a network error).

• The real object is slow.

• The real object has (or is) a user interface.

• The test needs to ask the real object about how it was

used (for example, a test might need to confirm that a

callback function was actually called).

• The real object does not yet exist (a common problem

when interfacing with other teams or new hardware sys-

tems).

Using mock objects, we can get around all of these problems.

The three key steps to using mock objects for testing are as

follows:

1. Use an interface to describe the relevant methods on the

object.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/utc2

STUBS 94

2. Implement the interface for production code.

3. Implement the interface in a mock object for testing.

The code under test refers to an object only by its interface or

base class, so it can remain blissfully ignorant about whether

it is using the real object or the mock. Sometimes there’s a

simpler solution to getting on with our testing, so let’s explore

that first.

6.1 Stubs

What we need to do is stub out all those uncooperative parts

of the real world and replace them with more complicit allies—

our own version of lighting doubles. For example, stubs allow

us to fake our interaction with a database or the file system.

In many cases, stubs just implement an interface and re-

turn dummy values for the methods in said interface. Note

that although we can also extract an abstract class, inter-

faces are preferred since they have no implementation details

and therefore provide the loosest coupling.1 In even simpler

cases, all the implemented methods in the stub just throw a

NotImplementedException.2

A common scenario is when there is a class that encapsulates

database access3 but we don’t want to configure and populate

a real-world database to run simple tests that operate only on

data.

public class MySqlCustomerRepository

{

public string[] FindById(long id)

{
xxxx xx xxxxx

}

}

1See [Pug06] and [CA05] for more details on designing with interfaces.
2Most IDEs will fill in this exception for us when told to automatically

implement the methods for an interface.
3The Repository design pattern documented in [Fow03] is one way to ac-

complish this.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/utc2

STUBS 95

First, we extract an interface for the methods we need to stub

and apply that interface to the class we want to mock:

public interface CustomerRepository

{

string[] FindById(long id);

}

public class MySqlCustomerRepository : CustomerRepository

{

public string[] FindById(long id)

{
xxxx xx xxxxx

}
}

Next, we can return the dummy value that we think will evoke

the behavior we want from the ProductAdoptionService:

public class StubCustomerRepository : CustomerRepository

{

public string[] FindById(long id)

{

return null;

}
}

For now we put the code for this stub class in the same file

as the test fixture class that will be using it. Later we’ll move

it to a more general area where other test fixture classes can

access it. Let’s plug in the stub to our unit test like so:

namespace WebCRM.Test.ProductAdoptionTest

{

[TestFixture]

public class NoDataFixture

{

[Test]

public void OverallRateIsZero()

{
CustomerRepository customerRepository =

new StubCustomerRepository();

ProductAdoptionService service =

new ProductAdoptionService(customerRepository);

Assert.That(service.GetPercentage(), Is.EqualTo(0));

}
}

}

Oops, this won’t actually compile. We get an error similar to

this:

Argument 1: Cannot convert from

‘CustomerRepository’ to ‘MySqlCustomerRepository’

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/utc2

FAKES 96

The ProductAdoptionService is still expecting an instance

of the concrete MySqlCustomerRepository class as the pa-

rameter to its constructor. We’ll need to change that parame-

ter to accept an object that implements the CustomerRepos-

itory interface instead. We’ll also need to change the field in

the ProductAdoptionService:

public class ProductAdoptionService

{
CustomerRepository repository;

public ProductAdoptionService(CustomerRepository repository)

{

this.repository = repository;

}
xxxxx xx xxxxx xx

}

If we’re lucky, our test might now pass, and we didn’t have to

touch a database. In fact, this test could have been written

before there was a schema design, database vendor debate,

or anything else. By programming to interfaces, we can plug

in what we need without being blocked on politicking or other

noncoding activities that can slow down a project. Note that

we not only get to verify the code being tested produces the

results that we want, but we also get to verify that it interacts

with the stubbed class in the way we expect.

6.2 Fakes

Sometimes you need to do more than return a single, static

dummy value to get at the code you’re trying to test. Fakes,

sometimes known as static or hand-rolled mocks, improve on

stubs by allowing for several different values to be returned.

What if you have files on the file system that conform to a

certain format and you want to test that you’re parsing them

correctly?

public class DumpFileParser

{
FileStream stream;

public DumpFileParser(string fileName)

{

stream = File.Open(fileName);

}

xxxx xxx xxxx
}

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/utc2

FAKES 97

The previous code requires a real file on the file system in

order to be tested. This can put an unnecessary file system

layout burden on the person running the tests, and the disk

I/O will slow down the tests.4 What can you do in a situation

like this to make it easier to test? In this case, the class

actually discards the supplied filename after the constructor

and just operates on the resulting stream.

We’ll look at a suboptimal way of making it more testable and

then at a more optimal way. It’s good to understand what

the evils in the world are so that we don’t accidentally end up

evoking any of them.

What if we used #define to tell the code when we were test-

ing? Then it wouldn’t use the file system.

public class DumpFileParser

{

FileStream stream;

public DumpFileParser(string fileName)

{

#if TESTING
stream = new MemoryStream();

#else
stream = File.Open(fileName);

#endif
}

xxxx xxx xxxx
}

MemoryStream is a nifty class in the .NET class library that

allows us to make, as you may have guessed, an in-memory

stream. Now we have a real Stream-derived object that the

class can interact with, and it doesn’t touch the file system.

Before we get too far ahead of ourselves, though, realize that

an empty stream has limitations. First, an empty stream

doesn’t really help you if the code needs to read data from

that stream. Many of the tests you write will probably want to

supply different data via the stream to make sure the parser

behaves correctly. We could figure out various ways to get

some test data into place in this scenario, but this approach

works around that the code wants the stream to be param-

eterized; our attempt to test this code has illuminated this.

4This doesn’t seem like a big deal, but little slowdowns like this add up

quickly.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/utc2

FAKES 98

Also, #if statements strewn throughout the code for testing

purposes are difficult to maintain. And, in our opinion, they’re

ugly to boot.

It might also be tempting to just add an empty constructor to

eliminate the need for any of this deep thinking. Although this

would “work” in a very narrow sense, there’s a good reason

there wasn’t an empty constructor in the first place: without

the Stream being created, the object isn’t in a valid state. In

this case, invalid state means a probable NullReferenceEx-

ception whenever you try to do anything with the object. Ob-

jects being in a valid state after construction is a core object-

oriented design principle, and ignoring it is not the right thing

to do in this case. Tests can help drive improvements to the

code’s design, but this particular example isn’t one of them.

Now that we’ve discussed what won’t work, what will work?

What if we shifted the responsibility of actually getting the

FileStream to the consumers of this class and those con-

sumers passed in a FileStream to the constructor instead of

a filename? Doing this transformation would resolve the de-

sign feedback we’re getting from testing this in the first place:

public class DumpFileParser

{
Stream stream;

public DumpFileParser(Stream dumpStream)

{

this.stream = dumpStream;

}

xxxx xxx xxxx
}

This isn’t bad at all. Now the consumers of the class, includ-

ing the tests, could perform the File.Open() and pass in a

FileStream. It may seem like we’re just moving the problem

around, but we needed to make our code a little shy; specifi-

cally, we needed to make it more liberal in what it will accept

without complaint.5 In this case, we aren’t using any meth-

ods specific to FileStream, so the constructor can actually

accept the base class, Stream, instead.6

5See [HT00] for details on why and how to make code “shy.”
6You generally want to use interfaces instead of abstract classes for pa-

rameters, but Stream doesn’t have a base interface [CA05].

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/utc2

FAKES 99

What does that get us? Well, in our tests we can now use the

spiffy MemoryStream class, like so:

[TestFixture]

public class DumpFileParserTest

{

private StreamWriter writer;

private DumpFileParser parser;

private MemoryStream stream;

[SetUp]

public void SetUp()

{

stream = new MemoryStream();

writer = new StreamWriter(stream);

}

[Test]

public void EmptyLine()

{

writer.WriteLine(string.Empty);

parser = new Parser(stream);

Assert.That(xxxx, xxxx);

}
}

Presto! We now have an instant pseudo text file that we can

also use to write binary data. Since this operates in mem-

ory, we won’t incur the performance penalty of disk I/O. Note

that this technique works just as well with sockets and other

stream-based I/O. Now we can do the testing we need, quickly

and conveniently. A nice side effect is that our code is more

loosely coupled, yielding a more flexible design that is easier

to reuse. One could say that changing the parameter to a

Stream was a change strictly for the sake of testing, and that

observation would be somewhat correct. The other side of the

story is that by not programming against a concrete imple-

mentation, the code now has a more flexible design. We were

led to this by refactoring a very little bit to make things easier

to test. This kind of design feedback is the real magic of unit

testing, but this is only one simple example.

Faking Collaborators

The DumpFileParser class we were just working on does

some pretty complicated collation of the data in the stream.

If another class depends on DumpFileParser, we don’t want

to make the entire fake stream necessary for it to produce

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/utc2

FAKES 100

the data against which we’re trying to test our other class.

Besides that it would be really tedious, it adds a whole new

dimension of coupling and maintenance to the test code. If

we use a real DumpFileParser while testing a collaborat-

ing class, we’re increasing the work we have to do if Dump-

FileParser changes or gets removed.

That doesn’t sound very pragmatic, so how do we decou-

ple DumpFileParser from the tests of a class that re-

quires a DumpFileParser? It’s actually similar to our ini-

tial example—we need to abstract things up a level, and then

we can supply a variation on DumpFileParser that returns

whatever dummy values we need for the purpose of testing

the other object. This is known in some circles as creating a

fake and in other circles as a static mock. Let’s look at some

code:

public class Analyzer

{

private DumpFileParser parser;

private List<string> reportItems;

public Analyzer(DumpFileParser parser)

{

this.parser = parser;

}

public bool ExpectationsMet

{
get

{
return

parser.ReportItems.Count == reportItems.Count;

}
}

public byte[] GetNextInstruction()

{
xxxxxxxxx

}
}

If we wanted to test the ExpectationsMet property, the

ReportItems property on parser would need to be under

our control so we can make it return what we want. One

way would be to make the ReportItems property on Dump-

FileParser virtual. We could then subclass and override it

for our testing purposes and pass an instance of said subclass

into the constructor for Analyzer.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/utc2

FAKES 101

Although that would work, there’s a better way that yields a

more flexible, and interface-oriented, design: extract an in-

terface called Parsable that contains, for the time being, a

declaration for the ReportItems property getter:

public interface Parsable

{

List<string> ReportItems

{
get;

}

}

Then, we can make DumpFileParser implement the

Parsable interface. Next, we change the Analyzer construc-

tor’s parameter from DumpFileParser to Parsable. Last,

we change the parser field in Analyzer from the Dump-

FileParser concrete class to be the Parsable interface that

DumpFileParser now implements. When we try to compile,

the compiler might tell us that we’re using some methods not

defined on the Parsable interface. We’ll need to add those

methods to the interface as well:

public DumpFileParser : Parsable

{
xxxxxxx

}

public class Analyzer

{

private Parsable parser;

private List<string> reportItems;

public Analyzer(Parsable parser)

{

this.parser = parser;

}

xxxxxxxx
}

None of the existing consumers of Analyzer has to change,

and yet, we have just made Analyzer easier to test and reuse.

If we wanted to add the ability to parse another file format,

Analyzer itself wouldn’t have to change to accommodate the

extra functionality—only the consumers would by passing in

a new class that implemented the Parsable interface.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/utc2

FAKES 102

This is a good example of the advantage of interface-based de-

sign, but the point worth mentioning again is that we arrived

at this better design by refactoring toward testability. Besides

being more testable and reusable, it also means we don’t need

to wait for another set of programmers to finish implementing

the concrete class that our class might be collaborating with.

We can fully unit test our class by faking the collaborator’s in-

terface, which generally makes integrating with the concrete

classes developed by others (or even our future selves) signif-

icantly less painful.7

Fakes are great, especially when they’re simple, but it’s also

easy to outgrow them, such as when we need to do more than

return a single value, for instance. At some point, we want

to return values in a certain order each time a method is

called. To accomplish this with a fake, we would need to track

a Stack of return values for a given method:

public class FakeParser : Parsable

{

private Stack<byte[]> bytesToReturn;

public Stack<byte[]> BytesToReturn

{
get { return bytesToReturn; }

set { bytesToReturn = value; }

}

public Boolean ExpectationsMet

{

get { return false; }

}

public Byte[] GetNextInstruction()

{

return BytesToReturn.Pop();

}

}

Although this would work and is a clever way to make a

programmable fake, we risk repeating ourselves because we

would end up doing this for most methods on our fake. It also

gets a little hairier when we have to make them throw spe-

cific exceptions at certain points to test failure modes. Surely,

there must be a better way.

7In many cases, the usually pandemonious step of integration just works.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/utc2

MOCK OBJECTS 103

6.3 Mock Objects

Sometimes we’ll need to test something that uses an existing

interface when there are no prewritten stubs or fakes lying

around. Often, we can just jump right on in and create a new

fake.

But what if the interface that we’re mocking is enormous, with

dozens of methods and accessors? That could mean a lot of

work producing a fake that implements the interface. This is

particularly galling if we need only one or two methods from

the interface to run our tests, and we can’t refactor to break

up the interface for some reason.

This is where dynamic mock objects come in. They let us

create an object that responds as if it implemented a full in-

terface, but in reality it is totally generic. You need to tell this

object only how to respond to the method calls that our code

uses. This can represent a considerable savings in time. It’ll

also give you less code to maintain in the future.

Dynamic mocks are great, but they also make it easy to work

around design issues rather than refactoring to fix them. With

fakes, because they are hand-rolled, kinks in the design of the

code we’re trying to test are more obvious.

Some people prefer using hand-rolled fakes and stubs when-

ever possible so they can get design feedback more directly.

Do whatever you are most comfortable with, but pay close

attention to what the code is trying to tell you.

The dynamic mock packages operate by creating proxy objects

that implement the mocked interface at runtime in the under-

lying implementation. These are objects that are designed to

stand in for their real-world counterparts. In the dynamic

mock object context, this means we can use a proxy in place

of a real object in our tests.

However, we still need to be able to control this generated

proxy object—we need to be able to tell it how to respond.

This is where the controller comes in.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/utc2

A Pragmatic Career
Welcome to the Pragmatic Community. We hope you’ve enjoyed this title.

If you’ve enjoyed this book by Johanna Rothman, and want to advance

your management career, you’ll be interested in seeing what happens Be-

hind Closed Doors. And see how you can lead you team to success by using

Agile Retrospectives.

Behind Closed Doors
You can learn to be a better manager—even a great

manager—with this guide. You’ll find powerful tips

covering:

• Delegating effectively • Using feedback and

goal-setting • Developing influence • Handling

one-on-one meetings • Coaching and mentoring

• Deciding what work to do-and what not to do

• . . . and more!

Behind Closed Doors Secrets of Great

Management

Johanna Rothman and Esther Derby

(192 pages) ISBN: 0-9766940-2-6. $24.95

http://pragmaticprogrammer.com/titles/rdbcd

Agile Retrospectives
Mine the experience of your software development

team continually throughout the life of the project.

Rather than waiting until the end of the project—as

with a traditional retrospective, when it’s too late to

help—agile retrospectives help you adjust to

change today.

The tools and recipes in this book will help you

uncover and solve hidden (and not-so-hidden)

problems with your technology, your methodology,

and those difficult “people issues” on your team.

Agile Retrospectives: Making Good Teams Great

Esther Derby and Diana Larsen

(170 pages) ISBN: 0-9776166-4-9. $29.95

http://pragmaticprogrammer.com/titles/dlret

http://pragmaticprogrammer.com/titles/rdbcd
http://pragmaticprogrammer.com/titles/dlret

Competitive Edge
Need to get software out the door? Then you want to see how to Ship It!

with less fuss and more features. And every developer can benefit from the

Practices of an Agile Developer.

Ship It!
Page after page of solid advice, all tried and tested

in the real world. This book offers a collection of

tips that show you what tools a successful team

has to use, and how to use them well. You’ll get

quick, easy-to-follow advice on modern techniques

and when they should be applied. You need this

book if: • You’re frustrated at lack of progress

on your project. • You want to make yourself and

your team more valuable. • You’ve looked at

methodologies such as Extreme Programming (XP)

and felt they were too, well, extreme. • You’ve

looked at the Rational Unified Process (RUP) or

CMM/I methods and cringed at the learning curve

and costs. • You need to get software out the

door without excuses

Ship It! A Practical Guide to Successful

Software Projects

Jared Richardson and Will Gwaltney

(200 pages) ISBN: 0-9745140-4-7. $29.95

http://pragmaticprogrammer.com/titles/prj

Practices of an Agile Developer
Agility is all about using feedback to respond to

change. Learn how to apply the principles of agility

throughout the software development process •

Establish and maintain an agile working

environment • Deliver what users really want •

Use personal agile techniques for better coding and

debugging • Use effective collaborative

techniques for better teamwork • Move to an agile

approach

Practices of an Agile Developer: Working in the

Real World

Venkat Subramaniam and Andy Hunt

(189 pages) ISBN: 0-9745140-8-X. $29.95

http://pragmaticprogrammer.com/titles/pad

http://pragmaticprogrammer.com/titles/prj
http://pragmaticprogrammer.com/titles/pad

Cutting Edge
Now that you’ve finished your project, are you sure that it’s ready for the real

world? Are you truly ready to Release It! in this crazy world?

Interested in Ruby on Rails, but don’t want to learn another framework from

scratch? You don’t have to! Rails for Java Programmersleverages you and

your team’s knowledge of Java to quickly learn the Rails environment.

Release It!
Whether it’s in Java, .NET, or Ruby on Rails,

getting your application ready to ship is only half

the battle. Did you design your system to survive a

sudden rush of visitors from Digg or Slashdot? Or

an influx of real world customers from 100 different

countries? Are you ready for a world filled with

flakey networks, tangled databases, and impatient

users?

If you’re a developer and don’t want to be on call at

3AM for the rest of your life, this book will help.

Design and Deploy Production-Ready Software

Michael T. Nygard

(368 pages) ISBN: 0-9787392-1-3. $34.95

http://pragmaticprogrammer.com/titles/mnee

Rails for Java Developers
Enterprise Java developers already have most of

the skills needed to create Rails applications. They

just need a guide which shows how their Java

knowledge maps to the Rails world. That’s what

this book does. It covers: • The Ruby language

• Building MVC Applications • Unit and

Functional Testing • Security • Project

Automation • Configuration • Web Services

This book is the fast track for Java programmers

who are learning or evaluating Ruby on Rails.

Rails for Java Developers

Stuart Halloway and Justin Gehtland

(300 pages) ISBN: 0-9776166-9-X. $34.95

http://pragmaticprogrammer.com/titles/fr_r4j

http://pragmaticprogrammer.com/titles/mnee
http://pragmaticprogrammer.com/titles/fr_r4j

Facets of Ruby Series
If you’re serious about Ruby, you need the definitive reference to the lan-

guage. The Pickaxe: Programming Ruby: The Pragmatic Programmer’s Guide,

Second Edition. This is the definitive guide for all Ruby programmers. And

you’ll need a good text editor, too. On the Mac, we recommend TextMate.

Programming Ruby (The Pickaxe)
The Pickaxe book, named for the tool on the cover,

is the definitive reference to this highly-regarded

language. • Up-to-date and expanded for Ruby

version 1.8 • Complete documentation of all the

built-in classes, modules, and methods

• Complete descriptions of all ninety-eight standard

libraries • 200+ pages of new content in this

edition • Learn more about Ruby’s web tools, unit

testing, and programming philosophy

Programming Ruby: The Pragmatic

Programmer’s Guide, 2nd Edition

Dave Thomas with Chad Fowler and Andy Hunt

(864 pages) ISBN: 0-9745140-5-5. $44.95

http://pragmaticprogrammer.com/titles/ruby

TextMate
If you’re coding Ruby or Rails on a Mac, then you

owe it to yourself to get the TextMate editor. And,

once you’re using TextMate, you owe it to yourself

to pick up this book. It’s packed with information

which will help you automate all your editing tasks,

saving you time to concentrate on the important

stuff. Use snippets to insert boilerplate code and

refactorings to move stuff around. Learn how to

write your own extensions to customize it to the

way you work.

TextMate: Power Editing for the Mac

James Edward Gray II

(200 pages) ISBN: 0-9787392-3-X. $29.95

http://pragmaticprogrammer.com/titles/textmate

http://pragmaticprogrammer.com/titles/ruby
http://pragmaticprogrammer.com/titles/textmate

Pragmatic Starter Kit
Version control. Unit Testing. Project Automation. Three great titles, one

objective. To get you up to speed with the essentials for successful project

development. Keep your source under control, your bugs in check, and your

process repeatable with these three concise, readable books from The Prag-

matic Bookshelf.

Visit Us Online
Unit Testing in C# Home Page

http://pragmaticprogrammer.com/titles/utc2

Source code from this book, errata, and other resources. Come give us feed-

back, too!

Register for Updates

http://pragmaticprogrammer.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragmaticprogrammer.com/community

Read our weblogs, join our online discussions, participate in our mailing list,

interact with our wiki, and benefit from the experience of other Pragmatic

Programmers.

New and Noteworthy

http://pragmaticprogrammer.com/news

Check out the latest pragmatic developments in the news.

Buy the Book
If you liked this PDF, perhaps you’d like to have a paper

copy of the book. It’s available for purchase at our store:

http://pragmaticprogrammer.com/titles/utc2.

Contact Us
Phone Orders: 1-800-699-PROG (+1 919 847 3884)

Online Orders: www.pragmaticprogrammer.com/catalog

Customer Service: orders@pragmaticprogrammer.com

Non-English Versions: translations@pragmaticprogrammer.com

Pragmatic Teaching: academic@pragmaticprogrammer.com

Author Proposals: proposals@pragmaticprogrammer.com

http://pragmaticprogrammer.com/titles/utc2
http://pragmaticprogrammer.com/updates
http://pragmaticprogrammer.com/community
http://pragmaticprogrammer.com/news
http://pragmaticprogrammer.com/titles/utc2
www.pragmaticprogrammer.com/catalog

	About the Starter Kit
	Preface
	to1Introduction
	Coding with Confidence
	What Is Unit Testing?
	Why Should We Bother with Unit Testing?
	What Do We Want to Accomplish?
	How Do We Do Unit Testing?
	Excuses for Not Testing
	Road Map

	to2Your First Unit Tests
	Planning Tests
	Testing a Simple Method
	Running Tests with NUnit
	Running the Example
	More Tests

	to3Writing Tests in NUnit
	Structuring Unit Tests
	Classic Asserts
	Constraint-Based Asserts
	NUnit Framework
	NUnit Test Selection
	More NUnit Asserts
	NUnit Custom Asserts
	NUnit and Exceptions
	Temporarily Ignoring Tests

	to4What to Test: The Right BICEP
	Are the Results Right?
	Boundary Conditions
	Check Inverse Relationships
	Cross-Check Using Other Means
	Force Error Conditions
	Performance Characteristics

	to5CORRECT Boundary Conditions
	Conformance
	Ordering
	Range
	Reference
	Existence
	Cardinality
	Time
	Try It Yourself

	to6Using Mock Objects
	Stubs
	Fakes
	Mock Objects
	When Not to Mock

	to7Properties of Good Tests
	Automatic
	Thorough
	Repeatable
	Independent
	Professional
	Testing the Tests

	to8Testing on a Project
	Where to Put Test Code
	Where to Put NUnit
	Test Courtesy
	Test Frequency
	Tests and Legacy Code
	Tests and Code Reviews

	to9Design Issues
	Designing for Testability
	Refactoring for Testing
	Testing the Class Invariant
	Test-Driven Design
	Testing Invalid Parameters

	to10UI Testing
	Unit Testing WinForms
	Unit Testing Beyond Windows Forms
	Web UIs
	Programmer UIs
	Command-Line UIs
	GUI Testing Gotchas

	toAGotchas
	As Long As the Code Works
	Smoke Tests
	``Works on My Machine''
	Floating-Point Problems
	Tests Take Too Long
	Tests Keep Breaking
	Tests Fail on Some Machines
	Tests Pass in One Test Runner, Not the Other
	Thread State Issues
	C# 2.0--Specific Issues

	toBResources
	On the Web
	Bibliography

	toCSummary: Pragmatic Unit Testing
	toDAnswers to Exercises

